scispace - formally typeset
Search or ask a question
Institution

Australian National University

EducationCanberra, Australian Capital Territory, Australia
About: Australian National University is a education organization based out in Canberra, Australian Capital Territory, Australia. It is known for research contribution in the topics: Population & Galaxy. The organization has 34419 authors who have published 109261 publications receiving 4315448 citations. The organization is also known as: The Australian National University & ANU.
Topics: Population, Galaxy, Stars, Zircon, Politics


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors examined the long-run relationship between output, pollutant emissions, and energy consumption in Malaysia during the period 1971-1999 and found a strong support for causality running from economic growth to energy consumption growth, both in the short run and long run.

776 citations

Journal ArticleDOI
TL;DR: In this article, the injection-dependent carrier recombination for a broad range of dopant concentrations of high-purity $n$-type and $p$)-type silicon wafers passivated with state-of-the-art dielectric layers of aluminum oxide or silicon nitride was studied.
Abstract: An accurate quantitative description of the Auger recombination rate in silicon as a function of the dopant density and the carrier injection level is important to understand the physics of this fundamental mechanism and to predict the physical limits to the performance of silicon based devices. Technological progress has permitted a near suppression of competing recombination mechanisms, both in the bulk of the silicon crystal and at the surfaces. This, coupled with advanced characterization techniques, has led to an improved determination of the Auger recombination rate, which is lower than previously thought. In this contribution we present a systematic study of the injection-dependent carrier recombination for a broad range of dopant concentrations of high-purity $n$-type and $p$-type silicon wafers passivated with state-of-the-art dielectric layers of aluminum oxide or silicon nitride. Based on these measurements, we develop a general parametrization for intrinsic recombination in crystalline silicon at 300 K consistent with the theory of Coulomb-enhanced Auger and radiative recombination. Based on this improved description we are able to analyze physical aspects of the Auger recombination mechanism such as the Coulomb enhancement.

775 citations

Journal ArticleDOI
TL;DR: A simple, fully analytic method of calculating the amount of radiation emitted by optical solitons perturbed by higher-order dispersion effects in fibers is demonstrated and finds good agreement with numerical results.
Abstract: We demonstrate a simple, fully analytic method of calculating the amount of radiation emitted by optical solitons perturbed by higher-order dispersion effects in fibers and find good agreement with numerical results. It is pointed out that this radiation mechanism is analogous to the well-known Cherenkov radiation processes in nonlinear optics. © 1995 The American Physical Society.

775 citations

Journal ArticleDOI
TL;DR: Stochastic boundaries are compatible with H modes and may be attractive for ELM control in next-step fusion tokamaks, and the H mode transport barrier and core confinement are unaffected by the stochastic boundary.
Abstract: OAK-B135 A stochastic magnetic boundary, produced by an externally applied edge resonant magnetic perturbation, is used to suppress large edge localized modes (ELMs) in high confinement (H-mode) plasmas. The resulting H-mode displays rapid, small oscillations with a bursty character modulated by a coherent 130 Hz envelope. The H-mode transport barrier is unaffected by the stochastic boundary. The core confinement of these discharges is unaffected, despite a three-fold drop in the toroidal rotation in the plasma core. These results demonstrate that stochastic boundaries are compatible with H-modes and may be attractive for ELM control in next-step burning fusion tokamaks.

774 citations

Journal ArticleDOI
TL;DR: It is shown that Aire deficiency causes almost complete failure to delete the organ-specific cells in the thymus, indicating that autoimmune polyendocrinopathy syndrome 1 is caused by failure of a specialized mechanism for deleting forbidden T cell clones.
Abstract: Autoimmune polyendocrinopathy syndrome type 1 is a recessive Mendelian disorder resulting from mutations in a novel gene, AIRE, and is characterized by a spectrum of organ-specific autoimmune diseases. It is not known what tolerance mechanisms are defective as a result of AIRE mutation. By tracing the fate of autoreactive CD4+ T cells with high affinity for a pancreatic antigen in transgenic mice with an Aire mutation, we show here that Aire deficiency causes almost complete failure to delete the organ-specific cells in the thymus. These results indicate that autoimmune polyendocrinopathy syndrome 1 is caused by failure of a specialized mechanism for deleting forbidden T cell clones, establishing a central role for this tolerance mechanism.

774 citations


Authors

Showing all 34925 results

NameH-indexPapersCitations
Cyrus Cooper2041869206782
Nicholas G. Martin1921770161952
David R. Williams1782034138789
Krzysztof Matyjaszewski1691431128585
Anton M. Koekemoer1681127106796
Robert G. Webster15884390776
Ashok Kumar1515654164086
Andrew White1491494113874
Bernhard Schölkopf1481092149492
Paul Mitchell146137895659
Liming Dai14178182937
Thomas J. Smith1401775113919
Michael J. Keating140116976353
Joss Bland-Hawthorn136111477593
Harold A. Mooney135450100404
Network Information
Related Institutions (5)
University of Oxford
258.1K papers, 12.9M citations

92% related

University College London
210.6K papers, 9.8M citations

91% related

Pennsylvania State University
196.8K papers, 8.3M citations

91% related

University of Edinburgh
151.6K papers, 6.6M citations

91% related

University of Cambridge
282.2K papers, 14.4M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023280
2022773
20215,261
20205,464
20195,109
20184,825