scispace - formally typeset
Search or ask a question

Showing papers by "Banaras Hindu University published in 2019"


Journal ArticleDOI
TL;DR: Phenolic acids are key class of dietary polyphenols, natural antioxidants that shields against growth and evolution in pathological conditions arise from oxidative stress.

646 citations


Journal ArticleDOI
A. Abada1, Marcello Abbrescia2, Marcello Abbrescia3, Shehu S. AbdusSalam4  +1491 moreInstitutions (239)
TL;DR: In this article, the authors present the second volume of the Future Circular Collider Conceptual Design Report, devoted to the electron-positron collider FCC-ee, and present the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan.
Abstract: In response to the 2013 Update of the European Strategy for Particle Physics, the Future Circular Collider (FCC) study was launched, as an international collaboration hosted by CERN. This study covers a highest-luminosity high-energy lepton collider (FCC-ee) and an energy-frontier hadron collider (FCC-hh), which could, successively, be installed in the same 100 km tunnel. The scientific capabilities of the integrated FCC programme would serve the worldwide community throughout the 21st century. The FCC study also investigates an LHC energy upgrade, using FCC-hh technology. This document constitutes the second volume of the FCC Conceptual Design Report, devoted to the electron-positron collider FCC-ee. After summarizing the physics discovery opportunities, it presents the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan. FCC-ee can be built with today’s technology. Most of the FCC-ee infrastructure could be reused for FCC-hh. Combining concepts from past and present lepton colliders and adding a few novel elements, the FCC-ee design promises outstandingly high luminosity. This will make the FCC-ee a unique precision instrument to study the heaviest known particles (Z, W and H bosons and the top quark), offering great direct and indirect sensitivity to new physics.

526 citations


Journal ArticleDOI
Heather Orpana1, Heather Orpana2, Laurie B. Marczak3, Megha Arora3  +338 moreInstitutions (173)
06 Feb 2019-BMJ
TL;DR: Age standardised mortality rates for suicide have greatly reduced since 1990, but suicide remains an important contributor to mortality worldwide and can be targeted towards vulnerable populations if they are informed by variations in mortality rates.
Abstract: Objectives To use the estimates from the Global Burden of Disease Study 2016 to describe patterns of suicide mortality globally, regionally, and for 195 countries and territories by age, sex, and Socio-demographic index, and to describe temporal trends between 1990 and 2016. Design Systematic analysis. Main outcome measures Crude and age standardised rates from suicide mortality and years of life lost were compared across regions and countries, and by age, sex, and Socio-demographic index (a composite measure of fertility, income, and education). Results The total number of deaths from suicide increased by 6.7% (95% uncertainty interval 0.4% to 15.6%) globally over the 27 year study period to 817 000 (762 000 to 884 000) deaths in 2016. However, the age standardised mortality rate for suicide decreased by 32.7% (27.2% to 36.6%) worldwide between 1990 and 2016, similar to the decline in the global age standardised mortality rate of 30.6%. Suicide was the leading cause of age standardised years of life lost in the Global Burden of Disease region of high income Asia Pacific and was among the top 10 leading causes in eastern Europe, central Europe, western Europe, central Asia, Australasia, southern Latin America, and high income North America. Rates for men were higher than for women across regions, countries, and age groups, except for the 15 to 19 age group. There was variation in the female to male ratio, with higher ratios at lower levels of Socio-demographic index. Women experienced greater decreases in mortality rates (49.0%, 95% uncertainty interval 42.6% to 54.6%) than men (23.8%, 15.6% to 32.7%). Conclusions Age standardised mortality rates for suicide have greatly reduced since 1990, but suicide remains an important contributor to mortality worldwide. Suicide mortality was variable across locations, between sexes, and between age groups. Suicide prevention strategies can be targeted towards vulnerable populations if they are informed by variations in mortality rates.

472 citations


Journal ArticleDOI
A. Abada1, Marcello Abbrescia2, Marcello Abbrescia3, Shehu S. AbdusSalam4  +1496 moreInstitutions (238)
TL;DR: In this paper, the authors describe the detailed design and preparation of a construction project for a post-LHC circular energy frontier collider in collaboration with national institutes, laboratories and universities worldwide, and enhanced by a strong participation of industrial partners.
Abstract: Particle physics has arrived at an important moment of its history. The discovery of the Higgs boson, with a mass of 125 GeV, completes the matrix of particles and interactions that has constituted the “Standard Model” for several decades. This model is a consistent and predictive theory, which has so far proven successful at describing all phenomena accessible to collider experiments. However, several experimental facts do require the extension of the Standard Model and explanations are needed for observations such as the abundance of matter over antimatter, the striking evidence for dark matter and the non-zero neutrino masses. Theoretical issues such as the hierarchy problem, and, more in general, the dynamical origin of the Higgs mechanism, do likewise point to the existence of physics beyond the Standard Model. This report contains the description of a novel research infrastructure based on a highest-energy hadron collider with a centre-of-mass collision energy of 100 TeV and an integrated luminosity of at least a factor of 5 larger than the HL-LHC. It will extend the current energy frontier by almost an order of magnitude. The mass reach for direct discovery will reach several tens of TeV, and allow, for example, to produce new particles whose existence could be indirectly exposed by precision measurements during the earlier preceding e+e– collider phase. This collider will also precisely measure the Higgs self-coupling and thoroughly explore the dynamics of electroweak symmetry breaking at the TeV scale, to elucidate the nature of the electroweak phase transition. WIMPs as thermal dark matter candidates will be discovered, or ruled out. As a single project, this particle collider infrastructure will serve the world-wide physics community for about 25 years and, in combination with a lepton collider (see FCC conceptual design report volume 2), will provide a research tool until the end of the 21st century. Collision energies beyond 100 TeV can be considered when using high-temperature superconductors. The European Strategy for Particle Physics (ESPP) update 2013 stated “To stay at the forefront of particle physics, Europe needs to be in a position to propose an ambitious post-LHC accelerator project at CERN by the time of the next Strategy update”. The FCC study has implemented the ESPP recommendation by developing a long-term vision for an “accelerator project in a global context”. This document describes the detailed design and preparation of a construction project for a post-LHC circular energy frontier collider “in collaboration with national institutes, laboratories and universities worldwide”, and enhanced by a strong participation of industrial partners. Now, a coordinated preparation effort can be based on a core of an ever-growing consortium of already more than 135 institutes worldwide. The technology for constructing a high-energy circular hadron collider can be brought to the technology readiness level required for constructing within the coming ten years through a focused R&D programme. The FCC-hh concept comprises in the baseline scenario a power-saving, low-temperature superconducting magnet system based on an evolution of the Nb3Sn technology pioneered at the HL-LHC, an energy-efficient cryogenic refrigeration infrastructure based on a neon-helium (Nelium) light gas mixture, a high-reliability and low loss cryogen distribution infrastructure based on Invar, high-power distributed beam transfer using superconducting elements and local magnet energy recovery and re-use technologies that are already gradually introduced at other CERN accelerators. On a longer timescale, high-temperature superconductors can be developed together with industrial partners to achieve an even more energy efficient particle collider or to reach even higher collision energies.The re-use of the LHC and its injector chain, which also serve for a concurrently running physics programme, is an essential lever to come to an overall sustainable research infrastructure at the energy frontier. Strategic R&D for FCC-hh aims at minimising construction cost and energy consumption, while maximising the socio-economic impact. It will mitigate technology-related risks and ensure that industry can benefit from an acceptable utility. Concerning the implementation, a preparatory phase of about eight years is both necessary and adequate to establish the project governance and organisation structures, to build the international machine and experiment consortia, to develop a territorial implantation plan in agreement with the host-states’ requirements, to optimise the disposal of land and underground volumes, and to prepare the civil engineering project. Such a large-scale, international fundamental research infrastructure, tightly involving industrial partners and providing training at all education levels, will be a strong motor of economic and societal development in all participating nations. The FCC study has implemented a set of actions towards a coherent vision for the world-wide high-energy and particle physics community, providing a collaborative framework for topically complementary and geographically well-balanced contributions. This conceptual design report lays the foundation for a subsequent infrastructure preparatory and technical design phase.

425 citations


Journal ArticleDOI
A. Abada1, Marcello Abbrescia2, Marcello Abbrescia3, Shehu S. AbdusSalam4  +1501 moreInstitutions (239)
TL;DR: In this article, the physics opportunities of the Future Circular Collider (FC) were reviewed, covering its e+e-, pp, ep and heavy ion programs, and the measurement capabilities of each FCC component, addressing the study of electroweak, Higgs and strong interactions.
Abstract: We review the physics opportunities of the Future Circular Collider, covering its e+e-, pp, ep and heavy ion programmes. We describe the measurement capabilities of each FCC component, addressing the study of electroweak, Higgs and strong interactions, the top quark and flavour, as well as phenomena beyond the Standard Model. We highlight the synergy and complementarity of the different colliders, which will contribute to a uniquely coherent and ambitious research programme, providing an unmatchable combination of precision and sensitivity to new physics.

407 citations


Journal ArticleDOI
TL;DR: The rapid metabolism and poor bioavailability have limited its therapeutic use, and the recently produced micronized resveratrol formulation called SRT501, shows promise.
Abstract: Resveratrol is a polyphenolic nutraceutical that exhibits pleiotropic activities in human subjects. The efficacy, safety, and pharmacokinetics of resveratrol have been documented in over 244 clinical trials, with an additional 27 clinical trials currently ongoing. Resveretrol is reported to potentially improve the therapeutic outcome in patients suffering from diabetes mellitus, obesity, colorectal cancer, breast cancer, multiple myeloma, metabolic syndrome, hypertension, Alzheimer's disease, stroke, cardiovascular diseases, kidney diseases, inflammatory diseases, and rhinopharyngitis. The polyphenol is reported to be safe at doses up to 5 g/d, when used either alone or as a combination therapy. The molecular basis for the pleiotropic activities of resveratrol are based on its ability to modulate multiple cell signaling molecules such as cytokines, caspases, matrix metalloproteinases, Wnt, nuclear factor-κB, Notch, 5'-AMP-activated protein kinase, intercellular adhesion molecule, vascular cell adhesion molecule, sirtuin type 1, peroxisome proliferator-activated receptor-γ coactivator 1α, insulin-like growth factor 1, insulin-like growth factor-binding protein 3, Ras association domain family 1α, pAkt, vascular endothelial growth factor, cyclooxygenase 2, nuclear factor erythroid 2 like 2, and Kelch-like ECH-associated protein 1. Although the clinical utility of resveratrol is well documented, the rapid metabolism and poor bioavailability have limited its therapeutic use. In this regard, the recently produced micronized resveratrol formulation called SRT501, shows promise. This review discusses the currently available clinical data on resveratrol in the prevention, management, and treatment of various diseases and disorders. Based on the current evidence, the potential utility of this molecule in the clinic is discussed.

269 citations


Journal ArticleDOI
TL;DR: The analysis of antibiotic contamination-driven resistance in global rivers provides a clear picture of the consequences in the near future, and integrons and mobile genetic elements are suggested as one of the important media for resistance gene transfer.

255 citations


Journal ArticleDOI
TL;DR: Improved understanding of the molecular mechanism behind the regulatory aspect of Akt and Erk networks can make strong impact on exploration of the neurodegenerative disease pathogenesis.
Abstract: Disruption of Akt and Erk-mediated signal transduction significantly contributes in the pathogenesis of various neurodegenerative diseases (NDs), such as Parkinson's disease, Alzheimer's diseases, Huntington's disease, and many others. These regulatory proteins serve as the regulator of cell survival, motility, transcription, metabolism, and progression of the cell cycle. Therefore, targeting Akt and Erk pathway has been proposed as a reasonable approach to suppress ND progression. This review has emphasized on involvement of Akt/Erk cascade in the neurodegeneration. Akt has been reported to regulate neuronal toxicity through its various substrates like FOXos, GSK3β, and caspase-9 etc. Akt is also involved with PI3K in signaling pathway to mediate neuronal survival. ERK is another kinase which also regulates proliferation, differentiation, and survival of the neural cell. There has also been much progress in developing a therapeutic molecule targeting Akt and Erk signaling. Therefore, improved understanding of the molecular mechanism behind the regulatory aspect of Akt and Erk networks can make strong impact on exploration of the neurodegenerative disease pathogenesis.

231 citations


Journal ArticleDOI
01 Dec 2019-Heliyon
TL;DR: The present review discusses the L-proline accumulation, metabolism, signaling, transport and regulation in the plants, and discusses the effects of exogenous L-Proline during different environmental conditions.

215 citations


Journal ArticleDOI
TL;DR: In this paper, the authors discuss perspectives for the use of compounds of botanical origin, as well as strategies employing the encapsulation techniques that can contribute to the development of systems for use in sustainable agricultural practices.

213 citations


Journal ArticleDOI
M. A. Acero1, P. Adamson2, L. Aliaga2, T. Alion3  +206 moreInstitutions (46)
TL;DR: The NOvA experiment has seen a 4.4σ signal of ν[over ¯]_{e} appearance in a 2 GeV ν(over ¯)_{μ} beam at a distance of 810 km, which is seen to favor the normal neutrino mass hierarchy.
Abstract: The NOvA experiment has seen a 4.4σ signal of ν[over ¯]_{e} appearance in a 2 GeV ν[over ¯]_{μ} beam at a distance of 810 km. Using 12.33×10^{20} protons on target delivered to the Fermilab NuMI neutrino beamline, the experiment recorded 27 ν[over ¯]_{μ}→ν[over ¯]_{e} candidates with a background of 10.3 and 102 ν[over ¯]_{μ}→ν[over ¯]_{μ} candidates. This new antineutrino data are combined with neutrino data to measure the parameters |Δm_{32}^{2}|=2.48_{-0.06}^{+0.11}×10^{-3} eV^{2}/c^{4} and sin^{2}θ_{23} in the ranges from (0.53-0.60) and (0.45-0.48) in the normal neutrino mass hierarchy. The data exclude most values near δ_{CP}=π/2 for the inverted mass hierarchy by more than 3σ and favor the normal neutrino mass hierarchy by 1.9σ and θ_{23} values in the upper octant by 1.6σ.

Journal ArticleDOI
TL;DR: It is suggested that endophytic microbes may significantly reduce use of agrochemicals in the cultivation of crop plants by transfer of endophytes from wild relatives of crops to crop species.
Abstract: Endophytes are microbes (mostly bacteria and fungi) present asymptomatically in plants. Endophytic microbes are often functional in that they may carry nutrients from the soil into plants, modulate plant development, increase stress tolerance of plants, suppress virulence in pathogens, increase disease resistance in plants, and suppress development of competitor plant species. Endophytic microbes have been shown to: (i) obtain nutrients in soils and transfer nutrients to plants in the rhizophagy cycle and other nutrient-transfer symbioses; (ii) increase plant growth and development; (iii) reduce oxidative stress of hosts; (iv) protect plants from disease; (v) deter feeding by herbivores; and (vi) suppress growth of competitor plant species. Because of the effective functions of endophytic microbes, we suggest that endophytic microbes may significantly reduce use of agrochemicals (fertilizers, fungicides, insecticides, and herbicides) in the cultivation of crop plants. The loss of endophytic microbes from crop plants during domestication and long-term cultivation could be remedied by transfer of endophytes from wild relatives of crops to crop species. Increasing atmospheric carbon dioxide levels could reduce the efficiency of the rhizophagy cycle due to repression of reactive oxygen used to extract nutrients from microbes in roots. © 2019 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

Journal ArticleDOI
TL;DR: This review tries to present the available data on As levels in various dietary sources, and the variation in the levels of inorganic and organic As species in different food items influence the associated As toxicity.

Journal ArticleDOI
TL;DR: How the modulation of lncRNAs by phytochemicals produce therapeutic effects on cancer and other chronic diseases is discussed in this review.
Abstract: The long non-coding RNAs (lncRNAs) are the crucial regulators of human chronic diseases. Therefore, approaches such as antisense oligonucleotides, RNAi technology, and small molecule inhibitors have been used for the therapeutic targeting of lncRNAs. During the last decade, phytochemicals and nutraceuticals have been explored for their potential against lncRNAs. The common lncRNAs known to be modulated by phytochemicals include ROR, PVT1, HOTAIR, MALAT1, H19, MEG3, PCAT29, PANDAR, NEAT1, and GAS5. The phytochemicals such as curcumin, resveratrol, sulforaphane, berberine, EGCG, and gambogic acid have been examined against lncRNAs. In some cases, formulation of phytochemicals has also been used. The disease models where phytochemicals have been demonstrated to modulate lncRNAs expression include cancer, rheumatoid arthritis, osteoarthritis, and nonalcoholic fatty liver disease. The regulation of lncRNAs by phytochemicals can affect multi-steps of tumor development. When administered in combination with the conventional drugs, phytochemicals can also produce synergistic effects on lncRNAs leading to the sensitization of cancer cells. Phytochemicals target lncRNAs either directly or indirectly by affecting a wide variety of upstream molecules. However, the potential of phytochemicals against lncRNAs has been demonstrated mostly by preclinical studies in cancer models. How the modulation of lncRNAs by phytochemicals produce therapeutic effects on cancer and other chronic diseases is discussed in this review.

Journal ArticleDOI
A. Abada1, Marcello Abbrescia2, Marcello Abbrescia3, Shehu S. AbdusSalam4  +1496 moreInstitutions (238)
TL;DR: The third volume of the FCC Conceptual Design Report as discussed by the authors is devoted to the hadron collider FCC-hh, and summarizes the physics discovery opportunities, presents the FCC-HH accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation.
Abstract: In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries.

Journal ArticleDOI
TL;DR: In this paper, the performance of inorganic electron transport materials (ETMs) for perovskite solar cells (PSCs) is analyzed and compared with those of organic HTMs.

Journal ArticleDOI
TL;DR: A review of the applicability of levoglucosan as a biomass burning tracer in different environmental matrices such as aerosols, marine, snow and ice-cores is provided in this paper.

Journal ArticleDOI
TL;DR: Over 200 clinical studies with curcumin that have demonstrated the pronounced protective role of this compound against cardiovascular diseases, inflammatory diseases, metabolic diseases, neurological diseases, skin diseases, liver diseases, various types of cancer, etc are discussed.
Abstract: Introduction: Since ancient times, turmeric has been used in several folklore remedies against various ailments. The principal component of turmeric is curcumin and its efficacy has been advocated ...

Journal ArticleDOI
TL;DR: The Multiangle Implementation of Atmospheric Correction (MAIAC) is a new generic algorithm applied to collection 6 (C6) MODIS measurements to retrieve Aerosol Optical Depth (AOD) over land at high spatial resolution (1 km) as discussed by the authors.

Journal ArticleDOI
TL;DR: The present review focuses on thedefense potential of secondary metabolites derived from medicinal plants in both plants and animals, and the possible futuristic scenarios and implications for plant, animal, and human health pertaining to the defense potential of these secondary metabolites under UV-B radiation-mediated damages.
Abstract: Ultraviolet-B (UV-B) radiation has, for many decades now, been widely studied with respect to its consequences on plant and animal health. Though according to NASA, the ozone hole is on its way to recovery, it will still be a considerable time before UV-B levels reach pre-industrial limits. Thus, for the present, excessive UV-B reaching the Earth is a cause for concern, and UV-B related human ailments are on the rise. Plants produce various secondary metabolites as one of the defense strategies under UV-B. They provide photoprotection via their UV-B screening effects and by quenching the reactive oxygen- and nitrogen species produced under UV-B influence. These properties of plant secondary metabolites (PSMs) are being increasingly recognized and made use of in sunscreens and cosmetics, and pharma- and nutraceuticals are gradually becoming a part of the regular diet. Secondary metabolites derived from medicinal plants (alkaloids, terpenoids, and phenolics) are a source of pharmaceuticals, nutraceuticals, as well as more rigorously tested and regulated drugs. These metabolites have been implicated in providing protection not only to plants under the influence of UV-B, but also to animals/animal cell lines, when the innate defenses in the latter are not adequate under UV-B-induced damage. The present review focuses on the defense potential of secondary metabolites derived from medicinal plants in both plants and animals. In plants, the concentrations of the alkaloids, terpenes/terpenoids, and phenolics have been discussed under UV-B irradiation as well as the fate of the genes and enzymes involved in their biosynthetic pathways. Their role in providing protection to animal models subjected to UV-B has been subsequently elucidated. Finally, we discuss the possible futuristic scenarios and implications for plant, animal, and human health pertaining to the defense potential of these secondary metabolites under UV-B radiation-mediated damages.

Journal ArticleDOI
TL;DR: In this paper, the authors have elucidated an understanding of the disease mechanism caused by several Alternaria HSTs on host plants and also the pathways of the toxins and how they caused disease in plants.
Abstract: Alternaria causes pathogenic disease on various economically important crops having saprophytic to endophytic lifecycle. Pathogenic fungi of Alternaria species produce many primary and secondary metabolites (SMs). Alternaria species produce more than 70 mycotoxins. Several species of Alternaria produce various phytotoxins that are host-specific (HSTs) and non-host-specific (nHSTs). These toxins have various negative impacts on cell organelles including chloroplast, mitochondria, plasma membrane, nucleus, Golgi bodies, etc. Non-host-specific toxins such as tentoxin (TEN), Alternaric acid, alternariol (AOH), alternariol 9-monomethyl ether (AME), brefeldin A (dehydro-), Alternuene (ALT), Altertoxin-I, Altertoxin-II, Altertoxin-III, zinniol, tenuazonic acid (TeA), curvularin and alterotoxin (ATX) I, II, III are known toxins produced by Alternaria species. In other hand, Alternaria species produce numerous HSTs such as AK-, AF-, ACT-, AM-, AAL- and ACR-toxin, maculosin, destruxin A, B, etc. are host-specific and classified into different family groups. These mycotoxins are low molecular weight secondary metabolites with various chemical structures. All the HSTs have different mode of actions, biochemical reactions, and signaling mechanisms to causes diseases in the host plants. These HSTs have devastating effects on host plant tissues by affecting biochemical and genetic modifications. Host-specific mycotoxins such as AK-toxin, AF-toxin, and AC-toxin have the devastating effect on plants which causes DNA breakage, cytotoxic, apoptotic cell death, interrupting plant physiology by mitochondrial oxidative phosphorylation and affect membrane permeability. This article will elucidate an understanding of the disease mechanism caused by several Alternaria HSTs on host plants and also the pathways of the toxins and how they caused disease in plants.

Journal ArticleDOI
TL;DR: This convenient, ecofriendly, and cost-effective peroxidase-based sensing system opens a new platform for analysis of AA in real samples and in complex biological systems.
Abstract: In the present study, an ecofriendly and zero-cost approach has been demonstrated for the preparation of carbon quantum dots by one-pot hydrothermal treatment of leaf extracts of neem (Azadirachta indica). The as-synthesized neem carbon quantum dots (N-CQDs) exhibited high fluorescent quantum yields (QYs) up to 27.2%. Moreover, N-CQDs also act with a peroxidase-like-mimetic activity toward the oxidation of peroxidase substrate 3,3′,5,5′-tetramethylbenzidine (TMB) in association with hydrogen peroxide (H2O2). Further, the kinetics of peroxidase-like catalytic activity follows the Michaelis–Menten and ping-pong pathway. In addition, the H2O2 sensitive TMB oxidation motivated the colorimetric detection of H2O2 which showed linearity from 0.1 to 0.5 mmol/L with a detection limit (LOD) of 0.035 mmol/L. Furthermore, the blue colors of oxidized TMB (ox-TMB) were selectively reduced in native TMB with ascorbic acid (AA) without any interference of other reducing agents. The linear range of AA detection was lying ...

Journal ArticleDOI
TL;DR: The estimated carcinogenic risk (CR) of HMs in soil and dust exceeded the acceptable level of human exposure, recommending significant CR to the local population.

Book ChapterDOI
01 Jan 2019
TL;DR: The progress that has been made to date in using the rhizospheric bacteria with various applications, for agricultural improvement with reference to plant growth-promoting mechanisms, has been summarized and discussed in the present chapter.
Abstract: Soil consists of diverse microscopic life forms such as actinomycetes, algae, bacteria, fungi, nematodes, and protozoans. But, the rhizospheric region is the most widely colonized regions of the soil due to the secretion of various nutrients by plant roots which attract microbes toward it with bacteria being the dominant one in this region. The bacteria in the rhizospheric region are highly beneficial for the plants as they directly or indirectly stimulate growth of the plants by nitrogen fixation; production of various phytohormones including auxins, cytokinins, and gibberellins; solubilization of phosphorus; production of 1-aminocyclopropane-1-carboxylate deaminase (ACC), siderophores, HCN, ammonia, and various lytic enzymes; and induction of systemic resistance. These plant growth-promoting bacteria of rhizospheric region are referred to as plant growth-promoting rhizobacteria (PGPR). The phyla involving major groups of PGPR include Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria belonging to different genera Acetobacter, Achromobacter, Arthrobacter, Azospirillum, Azotobacter, Bacillus, Burkholderia, Exiguobacterium, Flavobacterium, Gluconacetobacter, Herbaspirillum, Methylobacterium, Paenibacillus, Pseudomonas, Rhizobium, Serratia, and Staphylococcus. Furthermore, the use of PGPR offers an eco-friendly and an attractive way of replacing the chemical fertilizers, pesticides. In fact, there are many reports on use of rhizobacteria for improving the productivity and also protection of plants against pathogens and pests. In this way, benefits of using PGPR for sustainable agriculture is gaining a greater attention as well as acceptance worldwide, and the progress that has been made to date in using the rhizospheric bacteria with various applications, for agricultural improvement with reference to plant growth-promoting mechanisms, has been summarized and discussed in the present chapter.

Journal ArticleDOI
TL;DR: Results on the searches of weakly interacting massive particles (WIMPs) with sub-GeV masses (m_{χ}) via WIMP-nucleus spin-independent scattering with Migdal effect incorporated are reported.
Abstract: We report results on the searches of weakly interacting massive particles (WIMPs) with sub-GeV masses (m_{χ}) via WIMP-nucleus spin-independent scattering with Migdal effect incorporated. Analysis on time-integrated (TI) and annual modulation (AM) effects on CDEX-1B data are performed, with 737.1 kg day exposure and 160 eVee threshold for TI analysis, and 1107.5 kg day exposure and 250 eVee threshold for AM analysis. The sensitive windows in m_{χ} are expanded by an order of magnitude to lower DM masses with Migdal effect incorporated. New limits on σ_{χN}^{SI} at 90% confidence level are derived as 2×10^{-32}∼7×10^{-35} cm^{2} for TI analysis at m_{χ}∼50-180 MeV/c^{2}, and 3×10^{-32}∼9×10^{-38} cm^{2} for AM analysis at m_{χ}∼75 MeV/c^{2}-3.0 GeV/c^{2}.

Journal ArticleDOI
TL;DR: Novel species of fungi described in this study include those from various countries as follows: Australia, Chaetomella pseudocircinoseta and Coniella pseudodiospyri on Eucalyptus microcorys leaves, Cladophialophora eucalyPTi, TeratosphaeriaDunnii and Vermiculariopsiella dunnii on EUCalypti leaves, Cylindrium grande and Hypsotheca e
Abstract: Novel species of fungi described in this study include those from various countries as follows: Australia, Chaetomella pseudocircinoseta and Coniella pseudodiospyri on Eucalyptus microcorys leaves, Cladophialophora eucalypti, Teratosphaeria dunnii and Vermiculariopsiella dunnii on Eucalyptus dunnii leaves, Cylindrium grande and Hypsotheca eucalyptorum on Eucalyptus grandis leaves, Elsinoe salignae on Eucalyptus saligna leaves, Marasmius lebeliae on litter of regenerating subtropical rainforest, Phialoseptomonium eucalypti (incl. Phialoseptomonium gen. nov.) on Eucalyptus grandis × camaldulensis leaves, Phlogicylindrium pawpawense on Eucalyptus tereticornis leaves, Phyllosticta longicauda as an endophyte from healthy Eustrephus latifolius leaves, Pseudosydowia eucalyptorum on Eucalyptus sp. leaves, Saitozyma wallum on Banksia aemula leaves, Teratosphaeria henryi on Corymbia henryi leaves. Brazil, Aspergillus bezerrae, Backusella azygospora, Mariannaea terricola and Talaromyces pernambucoensis from soil, Calonectria matogrossensis on Eucalyptus urophylla leaves, Calvatia brasiliensis on soil, Carcinomyces nordestinensis on Bromelia antiacantha leaves, Dendryphiella stromaticola on small branches of an unidentified plant, Nigrospora brasiliensis on Nopalea cochenillifera leaves, Penicillium alagoense as a leaf endophyte on a Miconia sp., Podosordaria nigrobrunnea on dung, Spegazzinia bromeliacearum as a leaf endophyte on Tilandsia catimbauensis, Xylobolus brasiliensis on decaying wood. Bulgaria, Kazachstania molopis from the gut of the beetle Molops piceus. Croatia, Mollisia endocrystallina from a fallen decorticated Picea abies tree trunk. Ecuador, Hygrocybe rodomaculata on soil. Hungary, Alfoldia vorosii (incl. Alfoldia gen. nov.) from Juniperus communis roots, Kiskunsagia ubrizsyi (incl. Kiskunsagia gen. nov.) from Fumana procumbens roots. India, Aureobasidium tremulum as laboratory contaminant, Leucosporidium himalayensis and Naganishia indica from windblown dust on glaciers. Italy, Neodevriesia cycadicola on Cycas sp. leaves, Pseudocercospora pseudomyrticola on Myrtus communis leaves, Ramularia pistaciae on Pistacia lentiscus leaves, Neognomoniopsis quercina (incl. Neognomoniopsis gen. nov.) on Quercus ilex leaves. Japan, Diaporthe fructicola on Passiflora edulis × P. edulis f. flavicarpa fruit, Entoloma nipponicum on leaf litter in a mixed Cryptomeria japonica and Acer spp. forest. Macedonia, Astraeus macedonicus on soil. Malaysia, Fusicladium eucalyptigenum on Eucalyptus sp. twigs, Neoacrodontiella eucalypti (incl. Neoacrodontiella gen. nov.) on Eucalyptus urophylla leaves. Mozambique, Meliola gorongosensis on dead Philenoptera violacea leaflets. Nepal, Coniochaeta dendrobiicola from Dendriobium lognicornu roots. New Zealand, Neodevriesia sexualis and Thozetella neonivea on Archontophoenix cunninghamiana leaves. Norway, Calophoma sandfjordenica from a piece of board on a rocky shoreline, Clavaria parvispora on soil, Didymella finnmarkica from a piece of Pinus sylvestris driftwood. Poland, Sugiyamaella trypani from soil. Portugal, Colletotrichum feijoicola from Acca sellowiana. Russia, Crepidotus tobolensis on Populus tremula debris, Entoloma ekaterinae, Entoloma erhardii and Suillus gastroflavus on soil, Nakazawaea ambrosiae from the galleries of Ips typographus under the bark of Picea abies. Slovenia, Pluteus ludwigii on twigs of broadleaved trees. South Africa, Anungitiomyces stellenboschiensis (incl. Anungitiomyces gen. nov.) and Niesslia stellenboschiana on Eucalyptus sp. leaves, Beltraniella pseudoportoricensis on Podocarpus falcatus leaf litter, Corynespora encephalarti on Encephalartos sp. leaves, Cytospora pavettae on Pavetta revoluta leaves, Helminthosporium erythrinicola on Erythrina humeana leaves, Helminthosporium syzygii on a Syzygium sp. bark canker, Libertasomyces aloeticus on Aloe sp. leaves, Penicillium lunae from Musa sp. fruit, Phyllosticta lauridiae on Lauridia tetragona leaves, Pseudotruncatella bolusanthi (incl. Pseudotruncatellaceae fam. nov.) and Dactylella bolusanthi on Bolusanthus speciosus leaves. Spain, Apenidiella foetida on submerged plant debris, Inocybe grammatoides on Quercus ilex subsp. ilex forest humus, Ossicaulis salomii on soil, Phialemonium guarroi from soil. Thailand, Pantospora chromolaenae on Chromolaena odorata leaves. Ukraine, Cadophora helianthi from Helianthus annuus stems. USA, Boletus pseudopinophilus on soil under slash pine, Botryotrichum foricae, Penicillium americanum and Penicillium minnesotense from air. Vietnam, Lycoperdon vietnamense on soil. Morphological and culture characteristics are supported by DNA barcodes.

Journal ArticleDOI
TL;DR: Selenium (Se) is an essential element for many animals including humans, prokaryotes and a few green algae as discussed by the authors, but for plants, Se essentiality is yet to be demonstrated.
Abstract: Selenium (Se) is an essential element for many animals including humans, prokaryotes and a few green algae. For plants, Se essentiality is yet to be demonstrated. Nevertheless, it is well r...

Book ChapterDOI
01 Jan 2019
TL;DR: There is a need to produce more functional foods to ensure that they are used more efficiently and equitably, under a multifaceted and linked global strategy, for sustainable and equitable functional food security for the world population.
Abstract: The world has been facing an epidemic of undernutrition along with population explosion, resulting in a need for increased food availability. The concept behind food security is to increase the food availability to the population, so that the imbalance between the demand and supply of food is healthier and beneficial to the consumer. Recent advancements in food technology, plant breeding, and genetic engineering have enabled regions of the world to have adequate food resulting in a decrease in undernutrition and leading to the emergence of obesity and noncommunicable diseases. Since functional foods can decrease these problems, there is a need to produce more functional foods to ensure that they are used more efficiently and equitably, under a multifaceted and linked global strategy, for sustainable and equitable functional food security for the world population. Since data on functional food availability and functional food consumption are not available for all the countries, it is difficult to assess how much functional food would be needed for health promotion and diseases prevention by the year 2050.

Journal ArticleDOI
TL;DR: Fluorescent carbon quantum dots synthesized via facile one-step hydrothermal treatment of mustard seeds showed excellent optical property and showed its potential towards the selective and sensitive detection of ascorbic acid in the linear range of 10-70 μM having a correlation coefficient of 0.015 mM.

Journal ArticleDOI
TL;DR: UA has shown potent anti-inflammatory activity by preventing the degeneration of dopaminergic neurons from MPTP-induced Parkinsonian mice.
Abstract: Neuroinflammation plays an important role in the progression of Parkinson’s disease (PD) and hence may represent a target for treatment. The drugs used currently for PD only provide symptomatic relief and have adverse effects in addition to their inability in preventing degeneration of neurons. Flavonoids show potent antioxidant and anti-inflammatory activities which is very valuable for the health of human beings. Thus, in the present study, we have tried to explore the anti-inflammatory activity of orally given ursolic acid (UA) (25 mg/kg bwt), a pentacyclic triterpenoid in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-intoxicated mouse model. Significant severe oxidative stress and biochemical alterations have been seen in Parkinsonian mice after MPTP intoxication. Whereas, UA administration has significantly rescued the harmful consequence of MPTP intoxication. Ionized calcium-binding adaptor molecule 1 (Iba1), tumor necrosis factor-alpha (TNF-α), and nuclear transcription factor-κB (NF-κB) were seen to be altered in the substantia nigra pars compacta (SNpc) of MPTP-intoxicated mice through immunohistochemical studies. The changes in the expression level of these parameters primarily suggest increased inflammatory responses in MPTP-intoxicated mice as compared with the control. However, UA have significantly reduced these inflammatory parameters (Iba1 and TNF-α) along with transcription factor NF-κB, which regulates these inflammatory parameters and thus have inhibited MPTP-induced neuroinflammation. The immunoreactivity of tyrosine hydroxylase (TH) was considerably increased by UA treatment in the SNpc of Parkinsonian mice. The neuroinflammation and neurodegeneration along with impairments in biochemical and behavioral parameters were found to be reversed on treatment with UA. Thus, UA has shown potent anti-inflammatory activity by preventing the degeneration of dopaminergic neurons from MPTP-induced Parkinsonian mice.