scispace - formally typeset
Search or ask a question
Institution

Banaras Hindu University

EducationVaranasi, Uttar Pradesh, India
About: Banaras Hindu University is a education organization based out in Varanasi, Uttar Pradesh, India. It is known for research contribution in the topics: Population & Dielectric. The organization has 11858 authors who have published 23917 publications receiving 464677 citations. The organization is also known as: Kashi Hindu Vishvavidyalay & Benares Hindu University.


Papers
More filters
Journal ArticleDOI
TL;DR: The postulate of Cu2+-mediated antagonism of salt stress can be explained by a conceivable reversion of Na+-induced disturbance of cellular homeostasis by redox active Cu2+.
Abstract: This study provides first-hand information on the salinity and copper-induced oxidative damage and its protection in Anabaena doliolum by the antioxidant defence system. Oxidative damage measured in terms of lipid peroxidation, electrolyte leakage and H2O2 production was induced by different concentrations of NaCl and Cu2+. A greater electrolyte leakage by NaCl than Cu2+ supported the hypothesis of salinity being more injurious than copper. To explore the survival strategies of A. doliolum under NaCl and Cu stress, enzymatic antioxidant activities e.g. superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) and nonenzymatic antioxidant contents such as glutathione reduced (GSH), ascorbate, α-tocopherol, and carotenoid were measured. A general induction in SOD and APX activities as well as ascorbate and α-tocopherol contents was found under NaCl and Cu2+ stress. In contrast to this, an appreciable decline in GR activity, GSH pool and carotenoid content under Cu2+ and an increase under NaCl stress were observed. CAT activity was completely inhibited at high doses of NaCl but stimulated following Cu2+ treatment. The above results suggest the involvement of APX and CAT in the scavenging of H2O2 under Cu2+ stress. In contrast to this, only APX was involved in H2O2 scavenging under salt stress. Our postulate of Cu2+-mediated antagonism of salt stress can be explained by a conceivable reversion of Na+-induced disturbance of cellular homeostasis by redox active Cu2+.

123 citations

Journal ArticleDOI
TL;DR: In this article, the ability of fly ash to remove Omega Chrome Red ME (a chrome dye, mostly used in textile industries) from water has been studied, and it has been found that low adsorbate concentration, small particle size of adsorbent, low temperature, and acidic pH of the medium favor the removal of chrome dye from aqueous solutions.
Abstract: The ability of fly ash to remove Omega Chrome Red ME (a chrome dye, mostly used in textile industries) from water has been studied. It has been found that low adsorbate concentration, small particle size of adsorbent, low temperature, and acidic pH of the medium favor the removal of chrome dye from aqueous solutions. The dynamics of adsorbate transport from bulk to the solid phase has been studied at different temperatures in light of the adsorption of dye on the outer surface as well as diffusion within the pores of fly ash. The applicability of Langmuir isotherm suggests the formation of monolayer coverage of dye molecules on the outer interface of adsorbent. The thermodynamics of chrome dye-fly ash system indicates spontaneous and exothermic nature of the process. The pronounced removal of chrome dye in the acidic range may be due to the association of dye anions with the positively charged surface of the adsorbent.

123 citations

Journal ArticleDOI
TL;DR: In this article, seasonal changes in the levels of soil microbial biomass C (MBC) and N (MBN), N-mineralization rate and available-N concentration were studied in rice-barley supporting tropical dryland agroecosystem under six combinations of tillage (conventional, minimum and zero tillage) and crop residue manipulation (retained or removed) conditions.
Abstract: Seasonal changes in the levels of soil microbial biomass C (MBC) and N (MBN), N-mineralization rate and available-N concentration were studied in rice-barley supporting tropical dryland (rainfed) agroecosystem under six combinations of tillage (conventional, minimum and zero tillage) and crop residue manipulation (retained or removed) conditions. Highest levels of soil MBC and MBN (368-503 and 38.2-59.7 m gg ˇ1 , respectively) were obtained in minimum tillage residue retained (MTaR) treatment and lowest levels (214-264 and 20.3-27.1 m gg ˇ1 , respectively) in conventional tillage residue removed (CTR, control) treatment. Along with residue retention tillage reduction from conventional to zero increased the levels of MBC and MBN (36-82 and 29-104% over control, respectively). The proportion of MBC and MBN in soil organic C and total N contents increased significantly in all treatments compared to control. This increase (28% in case of C and 33% N) was maximum in MTaR and minimum (10% for C and N both) in minimum tillage residue removed (MTR) treatment. In all treatments concentrations of N in microbial biomass were greater at seedling stage, thereafter these concentrations decreased drastically (21-38%) at grain-forming stage of both crops. In residue removed treatments, N-mineralization rates were maximum during the seedling stage of crops and then decreased through the crop maturity. In residue retained treatments, however, N-mineralization rates were lower than in residue removed treatments at seedling stage of both crops. At grain-forming stage in all instances the N-mineralization rates in residue retained treatments considerably exceeded the rates in corresponding residue removed treatments. Tillage reduction and residue retention both increased the proportion of organic C and total N present in soil organic matter as microbial biomass. Microbial immobilization of available-N during the early phase of crops and its pulsed release later during the period of greater N demand of crops enhanced the degree of synchronization between crop demand and N supply. The maximum enhancement effects were recorded in the minimum tillage along with residue retained treatment. In the dryland agroecosystem studied, two management practices in combination proved more advantageous than either practice alone in maintaining soil fertility levels. For soil fertility amelioration in dryland agroecosystems with least dependence upon chemical fertilizer input, post-harvest retention of about 20 cm shoot biomass (accounting for 25-40% aboveground biomass) of previous crop and its incorporation in soil through minimum tillage in the succeeding crop is suggested, especially in the case of cereal. # 2000 Elsevier Science B.V. All rights reserved.

123 citations

Journal ArticleDOI
TL;DR: In this paper, the authors have elucidated an understanding of the disease mechanism caused by several Alternaria HSTs on host plants and also the pathways of the toxins and how they caused disease in plants.
Abstract: Alternaria causes pathogenic disease on various economically important crops having saprophytic to endophytic lifecycle. Pathogenic fungi of Alternaria species produce many primary and secondary metabolites (SMs). Alternaria species produce more than 70 mycotoxins. Several species of Alternaria produce various phytotoxins that are host-specific (HSTs) and non-host-specific (nHSTs). These toxins have various negative impacts on cell organelles including chloroplast, mitochondria, plasma membrane, nucleus, Golgi bodies, etc. Non-host-specific toxins such as tentoxin (TEN), Alternaric acid, alternariol (AOH), alternariol 9-monomethyl ether (AME), brefeldin A (dehydro-), Alternuene (ALT), Altertoxin-I, Altertoxin-II, Altertoxin-III, zinniol, tenuazonic acid (TeA), curvularin and alterotoxin (ATX) I, II, III are known toxins produced by Alternaria species. In other hand, Alternaria species produce numerous HSTs such as AK-, AF-, ACT-, AM-, AAL- and ACR-toxin, maculosin, destruxin A, B, etc. are host-specific and classified into different family groups. These mycotoxins are low molecular weight secondary metabolites with various chemical structures. All the HSTs have different mode of actions, biochemical reactions, and signaling mechanisms to causes diseases in the host plants. These HSTs have devastating effects on host plant tissues by affecting biochemical and genetic modifications. Host-specific mycotoxins such as AK-toxin, AF-toxin, and AC-toxin have the devastating effect on plants which causes DNA breakage, cytotoxic, apoptotic cell death, interrupting plant physiology by mitochondrial oxidative phosphorylation and affect membrane permeability. This article will elucidate an understanding of the disease mechanism caused by several Alternaria HSTs on host plants and also the pathways of the toxins and how they caused disease in plants.

123 citations

Journal ArticleDOI
TL;DR: Ascorbate peroxidase in rice seedlings appears to have an important role in detoxification of H 2 O 2 under abiotic stressful conditions and Glycine betaine appeared to be an effective protectant for both isoforms under in vitro water stressed conditions.

122 citations


Authors

Showing all 12110 results

NameH-indexPapersCitations
Ashok Kumar1515654164086
Rajesh Kumar1494439140830
Prashant Shukla131134185287
Sudhir Malik130166998522
Vijay P. Singh106169955831
Rakesh Agrawal105668107569
Gautam Sethi10242531088
Jens Christian Frisvad9945331760
Sandeep Kumar94156338652
E. De Clercq9077430296
Praveen Kumar88133935718
Shyam Sundar8661430289
Arvind Kumar8587633484
Padma Kant Shukla84123235521
Brajesh K. Singh8340124101
Network Information
Related Institutions (5)
University of Delhi
36.4K papers, 666.9K citations

96% related

Panjab University, Chandigarh
18.7K papers, 461K citations

96% related

Council of Scientific and Industrial Research
31.8K papers, 707.7K citations

94% related

Bhabha Atomic Research Centre
31.2K papers, 570.7K citations

93% related

Jadavpur University
27.6K papers, 422K citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202399
2022351
20211,606
20201,336
20191,162
20181,053