scispace - formally typeset
Search or ask a question
Institution

Banaras Hindu University

EducationVaranasi, Uttar Pradesh, India
About: Banaras Hindu University is a education organization based out in Varanasi, Uttar Pradesh, India. It is known for research contribution in the topics: Population & Catalysis. The organization has 11858 authors who have published 23917 publications receiving 464677 citations. The organization is also known as: Kashi Hindu Vishvavidyalay & Benares Hindu University.


Papers
More filters
Journal ArticleDOI
TL;DR: An electrochemical sensing platform which comprises gold nanoparticles (Au NPs) incorporated zinc based metal-organic framework (MOF-5) is developed for the sensitive determination of nitrite and nitrobenzene as mentioned in this paper.

94 citations

Journal ArticleDOI
TL;DR: PCR-based assays were performed to resolve the genetic variation between 28 different isolates of Verticillium chlamydosporium using primers designed to amplify ribosomal internal transcribed spacers and intergenic spacers, and PCR amplification of IGS was found to be the most sensitive method.

94 citations

Journal ArticleDOI
TL;DR: The NILs carrying gene Pi9 were found to be the most effective against the concoction of virulent races predominant in the hotspot locations for blast disease, and when analyzed under artificial inoculation, three-gene pyramids expressed enhanced resistance as compared to the two-Gene and monogenic Nils.
Abstract: A set of NILs carrying major blast resistance genes in a Basmati rice variety has been developed. Also, the efficacy of pyramids over monogenic NILs against rice blast pathogen Magnaporthe oryzae has been demonstrated. Productivity and quality of Basmati rice is severely affected by rice blast disease. Major genes and QTLs conferring resistance to blast have been reported only in non-Basmati rice germplasm. Here, we report incorporation of seven blast resistance genes from the donor lines DHMASQ164-2a (Pi54, Pi1, Pita), IRBLz5-CA (Pi2), IRBLb-B (Pib), IRBL5-M (Pi5) and IRBL9-W (Pi9) into the genetic background of an elite Basmati rice variety Pusa Basmati 1 (PB1). A total of 36 near-isogenic lines (NILs) comprising of 14 monogenic, 16 two-gene pyramids and six three-gene pyramids were developed through marker-assisted backcross breeding (MABB). Foreground, recombinant and background selection was used to identify the plants with target gene(s), minimize the linkage drag and increase the recurrent parent genome (RPG) recovery (93.5–98.6 %), respectively, in the NILs. Comparative analysis performed using 50,051 SNPs and 500 SSR markers revealed that the SNPs provided better insight into the RPG recovery. Most of the monogenic NILs showed comparable performance in yield and quality, concomitantly, Pusa1637-18-7-6-20 (Pi9), was significantly superior in yield and stable across four different environments as compared to recurrent parent (RP) PB1. Further, among the pyramids, Pusa1930-12-6 (Pi2+Pi5) showed significantly higher yield and Pusa1633-7-8-53-6-8 (Pi54+Pi1+Pita) was superior in cooking quality as compared to RP PB1. The NILs carrying gene Pi9 were found to be the most effective against the concoction of virulent races predominant in the hotspot locations for blast disease. Conversely, when analyzed under artificial inoculation, three-gene pyramids expressed enhanced resistance as compared to the two-gene and monogenic NILs.

94 citations

Journal ArticleDOI
TL;DR: The results showed that the isolates posses, multiple plant growth-promoting (PGP) traits and can be used as a potential candidate on the soil-plant system to increase their growth as well as productivity.
Abstract: The rhizosphere is the zone under influence of plant roots where various kinds of microbial activities occur which perform important functions such as increase uptake of nutrients for the host for their better growth and protection from several diseases caused by various phytopathogens. Keeping in this vital role performed by rhizospheric microbes, thirty-nine bacterial isolates were isolated on King's B and nutrient agar media from the rhizosphere region of mung bean plants. Among these isolates, foure were identified as Pseudomonas spp., Bacillus sp., Acinetobacter sp. on the basis of biochemical and 16 S rDNA gene sequencing analysis. All the isolates were screened in vitro for plant growth promoting attributes such as IAA production, phosphate solubilization, ammonia production, catalase production, siderophore production, and antagonistic activity against phytopathogenic Rhizoctonia solani, the causal organism of root rot in mung bean. All the bacterial strains showed significant PGPR attributes and were able to produce indole-3 -acetic acid (ranging from 45.66 µg/ml to 111.94 µg/ml). In addition, the isolated strains enhanced phosphate solubilization activity (ranging from 952.91 µg/ml to 1341.24 µg/ml). Out of all, Pseudomonas spp. showed most potent antifungal activities against R. solani. Thus, the current study has focused on the characterization of rhizobacteria isolated from the rhizosphere of healthy mung bean plant. The results showed that the isolates posses, multiple plant growth-promoting (PGP) traits and can be used as a potential candidate on the soil-plant system to increase their growth as well as productivity.

93 citations

Journal ArticleDOI
TL;DR: The chemical characterization of this EO through GC/GC–MS analysis depicted 13 compounds comprising 97.09% of the EO, carvone being the major component (59.6%) and the phytotoxicity assay showed 100% germination of EO-treated chickpea seeds.

93 citations


Authors

Showing all 12110 results

NameH-indexPapersCitations
Ashok Kumar1515654164086
Rajesh Kumar1494439140830
Prashant Shukla131134185287
Sudhir Malik130166998522
Vijay P. Singh106169955831
Rakesh Agrawal105668107569
Gautam Sethi10242531088
Jens Christian Frisvad9945331760
Sandeep Kumar94156338652
E. De Clercq9077430296
Praveen Kumar88133935718
Shyam Sundar8661430289
Arvind Kumar8587633484
Padma Kant Shukla84123235521
Brajesh K. Singh8340124101
Network Information
Related Institutions (5)
University of Delhi
36.4K papers, 666.9K citations

96% related

Panjab University, Chandigarh
18.7K papers, 461K citations

96% related

Council of Scientific and Industrial Research
31.8K papers, 707.7K citations

94% related

Bhabha Atomic Research Centre
31.2K papers, 570.7K citations

93% related

Jadavpur University
27.6K papers, 422K citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202399
2022351
20211,606
20201,336
20191,162
20181,053