scispace - formally typeset
Search or ask a question
Institution

Banaras Hindu University

EducationVaranasi, Uttar Pradesh, India
About: Banaras Hindu University is a education organization based out in Varanasi, Uttar Pradesh, India. It is known for research contribution in the topics: Population & Dielectric. The organization has 11858 authors who have published 23917 publications receiving 464677 citations. The organization is also known as: Kashi Hindu Vishvavidyalay & Benares Hindu University.


Papers
More filters
Journal ArticleDOI
TL;DR: Rab proteins are characterized by their distinct sub-cellular localization and regulate a wide variety of endocytic, transcytic and exocytic transport pathways and affect cell growth, motility and other biological processes.

220 citations

Journal ArticleDOI
TL;DR: In this paper, a green polymeric material, polyacrylamide grafted with Okra mucilage, a natural grade polysaccharide, was tested as corrosion inhibitor for mild steel in 0.5 M H 2 SO 4 using gravimetric and electrochemical techniques.

220 citations

Journal ArticleDOI
TL;DR: New innovative methods and the associated new insights into plant–fungal interactions are reviewed and the potential of fungi in preventing plant diseases, improving plant productivity and understanding ecosystem stability is understood.
Abstract: Fungi interact with plants in various ways, with each interaction giving rise to different alterations in both partners. While fungal pathogens have detrimental effects on plant physiology, mutualistic fungi augment host defence responses to pathogens and/or improve plant nutrient uptake. Tropic growth towards plant roots or stomata, mediated by chemical and topographical signals, has been described for several fungi, with evidence of species-specific signals and sensing mechanisms. Fungal partners secrete bioactive molecules such as small peptide effectors, enzymes and secondary metabolites which facilitate colonization and contribute to both symbiotic and pathogenic relationships. There has been tremendous advancement in fungal molecular biology, omics sciences and microscopy in recent years, opening up new possibilities for the identification of key molecular mechanisms in plant–fungal interactions, the power of which is often borne out in their combination. Our fragmentary knowledge on the interactions between plants and fungi must be made whole to understand the potential of fungi in preventing plant diseases, improving plant productivity and understanding ecosystem stability. Here, we review innovative methods and the associated new insights into plant–fungal interactions.

220 citations

Journal ArticleDOI
TL;DR: KSR represent an enormous potential to transform the problems associated with the agrarian sector and demonstrated significant reduction in media pH and increased K release with incubation period under both waste muscovite and biotite as a sole source of insoluble K mineral.

219 citations

Journal ArticleDOI
TL;DR: It is suggested that arsenite treatment causes oxidative stress in rice seedlings, increases the levels of many enzymatic and non-enzymatic antioxidants, and induces synthesis of thiols and PCs, which may serve as important components in mitigating arsenite-induced oxidative damage.
Abstract: The effects of arsenite treatment on generation of reactive oxygen species, induction of oxidative stress, response of antioxidative system, and synthesis of phytochelatins were investigated in two indica rice (Oryza sativa L.) cvs. Malviya-36 and Pant-12 grown in sand cultures for a period of 5-20 days. Arsenite (As(2)O(3); 25 and 50 μM) treatment resulted in increased formation of superoxide anion (O (2) (.-) ), elevated levels of H(2)O(2) and thiobarbituric acid reactive substances, showing enhanced lipid peroxidation. An enhanced level of ascorbate (AA) and glutathione (GSH) was observed irrespective of the variation in the level of dehydroascorbate (DHA) and oxidized glutathione (GSSG) which in turn influenced redox ratios AA/DHA and GSH/GSSG. With progressive arsenite treatment, synthesis of total acid soluble thiols and phytochelatins (PC) increased in the seedlings. Among antioxidative enzymes, the activities of superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6), total ascorbate peroxidase (APX, EC 1.11.1.11), chloroplastic ascorbate peroxidase, guaiacol peroxidase (EC 1.11.1.7), monodehydroascorbate reductase (EC 1.6.5.4), and glutathione reductase (EC 1.6.4.2) increased in arsenite treated seedlings, while dehyroascorbate reductase (EC 1.8.5.1) activity declined initially during 5-10 days and increased thereafter. Results suggest that arsenite treatment causes oxidative stress in rice seedlings, increases the levels of many enzymatic and non-enzymatic antioxidants, and induces synthesis of thiols and PCs, which may serve as important components in mitigating arsenite-induced oxidative damage.

218 citations


Authors

Showing all 12110 results

NameH-indexPapersCitations
Ashok Kumar1515654164086
Rajesh Kumar1494439140830
Prashant Shukla131134185287
Sudhir Malik130166998522
Vijay P. Singh106169955831
Rakesh Agrawal105668107569
Gautam Sethi10242531088
Jens Christian Frisvad9945331760
Sandeep Kumar94156338652
E. De Clercq9077430296
Praveen Kumar88133935718
Shyam Sundar8661430289
Arvind Kumar8587633484
Padma Kant Shukla84123235521
Brajesh K. Singh8340124101
Network Information
Related Institutions (5)
University of Delhi
36.4K papers, 666.9K citations

96% related

Panjab University, Chandigarh
18.7K papers, 461K citations

96% related

Council of Scientific and Industrial Research
31.8K papers, 707.7K citations

94% related

Bhabha Atomic Research Centre
31.2K papers, 570.7K citations

93% related

Jadavpur University
27.6K papers, 422K citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202399
2022351
20211,606
20201,336
20191,162
20181,053