scispace - formally typeset
Search or ask a question
Institution

Bar-Ilan University

EducationRamat Gan, Israel
About: Bar-Ilan University is a education organization based out in Ramat Gan, Israel. It is known for research contribution in the topics: Population & Poison control. The organization has 12835 authors who have published 34964 publications receiving 995648 citations. The organization is also known as: Bar Ilan University & BIU.


Papers
More filters
Proceedings Article
24 Apr 2017
TL;DR: This study presents a neural-network approach that optimizes the same likelihood function as optimized by the EM algorithm but extended to the case where the noisy labels are dependent on the features in addition to the correct labels.
Abstract: The availability of large datsets has enabled neural networks to achieve impressive recognition results. However, the presence of inaccurate class labels is known to deteriorate the performance of even the best classifiers in a broad range of classification problems. Noisy labels also tend to be more harmful than noisy attributes. When the observed label is noisy, we can view the correct label as a latent random variable and model the noise processes by a communication channel with unknown parameters. Thus we can apply the EM algorithm to find the parameters of both the network and the noise and to estimate the correct label. In this study we present a neural-network approach that optimizes the same likelihood function as optimized by the EM algorithm. The noise is explicitly modeled by an additional softmax layer that connects the correct labels to the noisy ones. This scheme is then extended to the case where the noisy labels are dependent on the features in addition to the correct labels. Experimental results demonstrate that this approach outperforms previous methods.

592 citations

Journal ArticleDOI
TL;DR: The complexity of multivalent metal-ion chemistries has led to rampant confusions, technical challenges, and eventually doubts and uncertainties about the future of these technologies as discussed by the authors, leading to rampant confusion and technical challenges.
Abstract: Batteries based on multivalent metals have the potential to meet the future needs of large-scale energy storage, due to the relatively high abundance of elements such as magnesium, calcium, aluminium and zinc in the Earth’s crust. However, the complexity of multivalent metal-ion chemistries has led to rampant confusions, technical challenges, and eventually doubts and uncertainties about the future of these technologies. In this Review, we clarify the key strengths as well as common misconceptions of multivalent metal-based batteries. We then examine the growth behaviour of metal anodes, which is crucial for their safety promises but hitherto unestablished. We further discuss scrutiny of anode efficiency and cathode storage mechanism pertaining to complications arising from electrolyte solutions. Finally, we critically review existing cathode materials and discuss design strategies to enable genuine multivalent metal-ion-based energy storage materials with competitive performance. Batteries based on multivalent metal anodes hold great promise for large-scale energy storage but their development is still at an early stage. This Review surveys the main complexity arising from anodes, electrolytes and cathodes, and offers views on the progression path of these technologies.

590 citations

Journal ArticleDOI
TL;DR: In this article, experimental studies of the time decay of the nonequilibrium magnetization in high-temperature superconductors, a phenomenon known as magnetic relaxation, are reviewed from a purely experimental perspective and discussed in the context of present phenomenological theories.
Abstract: We review experimental studies of the time decay of the nonequilibrium magnetization in high-temperature superconductors, a phenomenon known as magnetic relaxation. This effect has its origin in motion of flux lines out of their pinning sites due to thermal activation or quantum tunneling. The combination of relatively weak flux pinning and high temperatures leads to rich properties that are unconventional in the context of low temperature superconductivity and that have been the subject to intense studies. The results are assessed from a purely experimental perspective and discussed in the context of present phenomenological theories. [S0034-6861(96)00403-5]

590 citations

Journal ArticleDOI
TL;DR: In this paper, the critical behavior of systems having a multicritical point of a new type, hereafter called a Lifshitz point, was calculated for anisotropic and isotropic systems.
Abstract: We calculate the critical behavior of systems having a multicritical point of a new type, hereafter called a Lifshitz point, which separates ordered phases with $\stackrel{\ensuremath{\rightarrow}}{\mathrm{k}}=0$ and $\stackrel{\ensuremath{\rightarrow}}{\mathrm{k}}\ensuremath{ e}0$ along the $\ensuremath{\lambda}$ line. For anisotropic systems, the correlation function is described in terms of four critical exponents, whereas for isotropic systems two exponents suffice. Critical exponents are calculated using an $\ensuremath{\epsilon}$-type expansion.

590 citations

Journal ArticleDOI
TL;DR: It is demonstrated that at short times the granules perform subdiffusion according to the laws of continuous time random walk theory and the associated violation of ergodicity leads to a characteristic turnover between two scaling regimes of the time averaged mean squared displacement.
Abstract: Combining extensive single particle tracking microscopy data of endogenous lipid granules in living fission yeast cells with analytical results we show evidence for anomalous diffusion and weak ergodicity breaking. Namely we demonstrate that at short times the granules perform subdiffusion according to the laws of continuous time random walk theory. The associated violation of ergodicity leads to a characteristic turnover between two scaling regimes of the time averaged mean squared displacement. At longer times the granule motion is consistent with fractional Brownian motion.

587 citations


Authors

Showing all 13037 results

NameH-indexPapersCitations
H. Eugene Stanley1541190122321
Albert-László Barabási152438200119
Shlomo Havlin131101383347
Stuart A. Aaronson12965769633
Britton Chance128111276591
Mark A. Ratner12796868132
Doron Aurbach12679769313
Jun Yu121117481186
Richard J. Wurtman11493353290
Amir Lerman11187751969
Zhu Han109140748725
Moussa B.H. Youdim10757442538
Juan Bisquert10745046267
Rachel Yehuda10646136726
Michael F. Green10648545707
Network Information
Related Institutions (5)
University of Maryland, College Park
155.9K papers, 7.2M citations

93% related

Rutgers University
159.4K papers, 6.7M citations

93% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

93% related

Boston University
119.6K papers, 6.2M citations

92% related

Pennsylvania State University
196.8K papers, 8.3M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023117
2022330
20212,286
20202,157
20191,920
20181,768