scispace - formally typeset
Search or ask a question
Institution

Bauhaus University, Weimar

EducationWeimar, Thüringen, Germany
About: Bauhaus University, Weimar is a education organization based out in Weimar, Thüringen, Germany. It is known for research contribution in the topics: Finite element method & Isogeometric analysis. The organization has 1421 authors who have published 2998 publications receiving 104454 citations. The organization is also known as: Bauhaus-Universität Weimar & Hochschule für Architektur und Bauwesen.


Papers
More filters
Proceedings ArticleDOI
26 Aug 2005
TL;DR: It is proposed that stimuli depicting globally consistent, naturalistic scenes provide observers with a convincing spatial reference frame for the simulated environment which allows them to feel "spatially present" therein and increases the believability of the visual stimuli as a stable "scene" with respect to which visual motion is more likely to be judged as self-motion.
Abstract: The illusion of self-motion induced by moving visual stimuli ("vection") has typically been attributed to low-level, bottom-up perceptual processes. Therefore, past research has focused primarily on examining how physical parameters of the visual stimulus (contrast, number of vertical edges etc.) affect vection. Here, we investigated whether higher-level cognitive and top-down processes - namely global scene consistency and spatial presence - also contribute to the illusion. These factors were indirectly manipulated by presenting either a natural scene (the Tubingen market place) or various scrambled and thus globally inconsistent versions of the same stimulus. Due to the scene scrambling, the stimulus could no longer be perceived as a consistent 3D scene, which was expected to decrease spatial presence and thus impair vection. Twelve naive observers were asked to indicate the onset, intensity, and convincingness of circular vection induced by rotating visual stimuli presented on a curved projection screen (FOV: 54°x45°). Spatial presence was assessed using presence questionnaires. As predicted, scene scrambling impaired both vection and presence ratings for all dependent measures. Neither type nor severity of scrambling, however, showed any clear effect. The data suggest that higher-level information (the interpretation of the globally consistent stimulus as a 3D scene and stable reference frame) dominated over the low-level (bottom-up) information (more contrast edges in the scrambled stimuli, which are known to facilitate vection). Results suggest a direct relation between spatial presence and self-motion perception. We posit that stimuli depicting globally consistent, naturalistic scenes provide observers with a convincing spatial reference frame for the simulated environment which allows them to feel "spatially present" therein. We propose that this, in turn, increases the believability of the visual stimuli as a stable "scene" with respect to which visual motion is more likely to be judged as self-motion. We propose that not only low-level, bottom-up factors, but also higher-level factors such as the meaning of the stimulus are relevant for self-motion perception and should thus receive more attention. This work has important implications for both our understanding of selfmotion perception and motion simulator design and applications.

38 citations

Journal ArticleDOI
TL;DR: In this paper, the authors evaluated the performance and durability of water-repellent surface treatment when applied to high performance concrete (HPC) and found that water repellent agents are effective in reducing the ingress of water and incorporated aggressive agents.

38 citations

Book ChapterDOI
18 Aug 2020
TL;DR: An overview of ML algorithms used for smart monitoring is presented, providing an overview of categories ofML algorithms for smart Monitoring that may be modified to achieve explainable artificial intelligence in civil engineering.
Abstract: Recent developments in artificial intelligence (AI), in particular machine learning (ML), have been significantly advancing smart city applications. Smart infrastructure, which is an essential component of smart cities, is equipped with wireless sensor networks that autonomously collect, analyze, and communicate structural data, referred to as “smart monitoring”. AI algorithms provide abilities to process large amounts of data and to detect patterns and features that would remain undetected using traditional approaches. Despite these capabilities, the application of AI algorithms to smart monitoring is still limited due to mistrust expressed by engineers towards the generally opaque AI inner processes. To enhance confidence in AI, the “black-box” nature of AI algorithms for smart monitoring needs to be explained to the engineers, resulting in so-called “explainable artificial intelligence” (XAI). However, when aiming at improving the explainability of AI algorithms through XAI for smart monitoring, the variety of AI algorithms requires proper categorization. Therefore, this review paper first identifies objectives of smart monitoring, serving as a basis to categorize AI algorithms or, more precisely, ML algorithms for smart monitoring. ML algorithms for smart monitoring are then reviewed and categorized. As a result, an overview of ML algorithms used for smart monitoring is presented, providing an overview of categories of ML algorithms for smart monitoring that may be modified to achieve explainable artificial intelligence in civil engineering.

38 citations

Proceedings ArticleDOI
14 Mar 2009
TL;DR: This work describes the design, implementation and evaluation of a client-server depth-image warping architecture that updates and displays the scene graph at the refresh rate of the display and confirms that the approach facilitates common interaction tasks such as navigation and object manipulation.
Abstract: Designing low end-to-end latency system architectures for virtual reality is still an open and challenging problem. We describe the design, implementation and evaluation of a client-server depth-image warping architecture that updates and displays the scene graph at the refresh rate of the display. Our approach works for scenes consisting of dynamic and interactive objects. The end-to-end latency is minimized as well as smooth object motion generated. However, this comes at the expense of image quality inherent to warping techniques. We evaluate the architecture and its design trade-offs by comparing latency and image quality to a conventional rendering system. Our experience with the system confirms that the approach facilitates common interaction tasks such as navigation and object manipulation.

38 citations

Journal ArticleDOI
TL;DR: A record low thermal conductivity in polycrystalline MoS2 is reported for ultrathin films with varying grain sizes and orientations and the possible use of these thermal insulating films in the context of electronics and thermoelectricity is discussed.
Abstract: We report a record low thermal conductivity in polycrystalline MoS2 obtained for ultrathin films with varying grain sizes and orientations. By optimizing the sulfurization parameters of nanometer-thick Mo layers, five MoS2 films containing a combination of horizontally and vertically oriented grains, with respect to the bulk (001) monocrystal, were grown. From transmission electron microscopy, the average grain size, typically below 10 nm, and proportion of differently oriented grains were extracted. The thermal conductivity of the suspended samples was extracted from a Raman laser-power-dependent study, and the lowest value of thermal conductivity of 0.27 W m–1 K–1, which reaches a similar value as that of Teflon, is obtained in a polycrystalline sample formed by a combination of horizontally and vertically oriented grains in similar proportion. Analysis by means of molecular dynamics and finite element method simulations confirm that such a grain arrangement leads to lower grain boundary conductance. We...

38 citations


Authors

Showing all 1443 results

NameH-indexPapersCitations
Timon Rabczuk9972735893
Adri C. T. van Duin7948926911
Paolo Rosso5654112757
Xiaoying Zhuang5427110082
Benno Stein533409880
Jin-Wu Jiang521757661
Gordon Wetzstein512589793
Goangseup Zi451538411
Bohayra Mortazavi441625802
Thorsten Hennig-Thurau4412317542
Jörg Hoffmann402007785
Martin Potthast401906563
Pedro M. A. Areias381075908
Amir Mosavi384326209
Guido De Roeck382748063
Network Information
Related Institutions (5)
Delft University of Technology
94.4K papers, 2.7M citations

83% related

Georgia Institute of Technology
119K papers, 4.6M citations

83% related

Carnegie Mellon University
104.3K papers, 5.9M citations

83% related

Eindhoven University of Technology
52.9K papers, 1.5M citations

82% related

Microsoft
86.9K papers, 4.1M citations

82% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202321
202260
2021224
2020249
2019247
2018273