scispace - formally typeset
Search or ask a question
Institution

Bauhaus University, Weimar

EducationWeimar, Thüringen, Germany
About: Bauhaus University, Weimar is a education organization based out in Weimar, Thüringen, Germany. It is known for research contribution in the topics: Finite element method & Isogeometric analysis. The organization has 1421 authors who have published 2998 publications receiving 104454 citations. The organization is also known as: Bauhaus-Universität Weimar & Hochschule für Architektur und Bauwesen.


Papers
More filters
Journal ArticleDOI
TL;DR: This work uses phononic thin plate systems for robust energy harvesting application relying on zero-dimensional cavities confined by the Kekule distorted topological vortices and shows that the proposed energy harvesting system is highly robust against symmetry-preserving defects, and is less influenced even for symmetry-breaking defects at moderate perturbation level.

36 citations

Journal ArticleDOI
TL;DR: In this paper, a raw bentonite clay of high volume capacity and small exploitation options was selected to check its pozzolanic activity after suitable thermal treatment and the consequent effects on the concrete performance.

36 citations

Journal ArticleDOI
TL;DR: A novel methodology of local adaptivity for the frequency-domain analysis of the vibrations of Reissner–Mindlin plates, based on the recently developed Geometry Independent Field approximaTion framework, which may be seen as a generalization of the Iso-Geometric Analysis.

36 citations

Journal ArticleDOI
TL;DR: In this paper, a nonlocal finite element model is proposed to analyze the thermo-elastic behavior of imperfect functionally graded porous nanobeams (P-FG) on the basis of nonlocal elasticity theory and employing a double-parameter elastic foundation.
Abstract: In this study, for the first time, a nonlocal finite element model is proposed to analyse thermo-elastic behaviour of imperfect functionally graded porous nanobeams (P-FG) on the basis of nonlocal elasticity theory and employing a double-parameter elastic foundation. Temperature-dependent material properties are considered for the P-FG nanobeam, which are assumed to change continuously through the thickness based on the power-law form. The size effects are incorporated in the framework of the nonlocal elasticity theory of Eringen. The equations of motion are achieved based on first-order shear deformation beam theory through Hamilton's principle. Based on the obtained numerical results, it is observed that the proposed beam element can provide accurate buckling and frequency results for the P-FG nanobeams as compared with some benchmark results in the literature. The detailed variational and finite element procedure are presented and numerical examinations are performed. A parametric study is performed to investigate the influence of several parameters such as porosity volume fraction, porosity distribution, thermal loading, material graduation, nonlocal parameter, slenderness ratio and elastic foundation stiffness on the critical buckling temperature and the nondimensional fundamental frequencies of the P-FG nanobeams. Based on the results of this study, a porous FG nanobeam has higher thermal buckling resistance and natural frequencies compared to a perfect FG nanobeam. Also, the format of the porosity distribution is important, that uniform distributions of porosity result in greater critical buckling temperatures and vibration frequencies, in comparison with functional distributions of porosities.

36 citations

Journal ArticleDOI
TL;DR: In this paper, a method to statistically characterize the complex geometry of porous material microstructures, parameterize these random micro-structures into statistically condense, feature rich metrics, and relate these metrics to material properties such as permeability is presented.

36 citations


Authors

Showing all 1443 results

NameH-indexPapersCitations
Timon Rabczuk9972735893
Adri C. T. van Duin7948926911
Paolo Rosso5654112757
Xiaoying Zhuang5427110082
Benno Stein533409880
Jin-Wu Jiang521757661
Gordon Wetzstein512589793
Goangseup Zi451538411
Bohayra Mortazavi441625802
Thorsten Hennig-Thurau4412317542
Jörg Hoffmann402007785
Martin Potthast401906563
Pedro M. A. Areias381075908
Amir Mosavi384326209
Guido De Roeck382748063
Network Information
Related Institutions (5)
Delft University of Technology
94.4K papers, 2.7M citations

83% related

Georgia Institute of Technology
119K papers, 4.6M citations

83% related

Carnegie Mellon University
104.3K papers, 5.9M citations

83% related

Eindhoven University of Technology
52.9K papers, 1.5M citations

82% related

Microsoft
86.9K papers, 4.1M citations

82% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202321
202260
2021224
2020249
2019247
2018273