scispace - formally typeset
Search or ask a question
Institution

Bauhaus University, Weimar

EducationWeimar, Thüringen, Germany
About: Bauhaus University, Weimar is a education organization based out in Weimar, Thüringen, Germany. It is known for research contribution in the topics: Finite element method & Isogeometric analysis. The organization has 1421 authors who have published 2998 publications receiving 104454 citations. The organization is also known as: Bauhaus-Universität Weimar & Hochschule für Architektur und Bauwesen.


Papers
More filters
Journal ArticleDOI
TL;DR: The proposed framework for constructing IGA-suitable planar B-spline parameterizations from given complex CAD boundaries is demonstrated by several examples which are compared to results obtained by the skeleton-based parameterization approach.

88 citations

Journal ArticleDOI
TL;DR: The results demonstrate the suitability of the investigated OCs for the determination of high resolution soil dielectric spectra with a broadband relaxation model, as well as a novel, coupled hydraulic-dielectric mixture approach.
Abstract: Open-ended coaxial line probes (OCs) are systematically analyzed by means of numerical 3-D finite element calculations in combination with experimental investigations for microwave dielectric spectroscopy on fine grained soils. The probes, based on conventional coaxial lines and connectors (N, SMA), are broadband characterized in the frequency range from 1 MHz to 10 GHz. The sensitive region for dielectric measurements is ±7-mm lateral and 7-mm perpendicular to the midpoint of the sensor aperture. The spatial spreading of the sensitive zone is stable for the investigated low-loss and high-loss strongly dispersive standard liquids, as well as the saturated and unsaturated soils. Dielectric spectra are determined based on a bilinear relationship between effective permittivity and complex reflection coefficient of the probe after probe-calibration with known standards. The mean relative error of the real part of the complex permittivity from 100 MHz to 10 GHz is smaller than 3.5% and is less than 10% for the imaginary part. A lower limit of the measurement range of 50 MHz with the used procedure and materials is suggested. Complex effective permittivity of saturated fine-grained soils is determined with the developed probes and procedure. The soil dielectric spectra were analyzed with a broadband relaxation model, as well as a novel, coupled hydraulic-dielectric mixture approach. The results demonstrate the suitability of the investigated OCs for the determination of high resolution soil dielectric spectra.

87 citations

Journal ArticleDOI
TL;DR: In this article, the authors employed first-principles density functional theory calculations to investigate the mechanical properties of five different single-layer borophene sheets and analyzed the effect of loading direction and point vacancy on the mechanical response.
Abstract: Recent experimental advances for the fabrication of various borophene sheets introduced new structures with a wide prospect of applications. Borophene is the boron atoms analogue of graphene. Borophene exhibits various structural polymorphs all of which are metallic. In this work, we employed first-principles density functional theory calculations to investigate the mechanical properties of five different single-layer borophene sheets. In particular, we analyzed the effect of loading direction and point vacancy on the mechanical response of borophene. Moreover, we compared the thermal stabilities of the considered borophene systems. Based on the results of our modelling, borophene films depending on the atomic configurations and the loading direction can yield remarkable elastic modulus in the range of 163-382 GPa.nm and high ultimate tensile strength from 13.5 GPa.nm to around 22.8 GPa.nm at the corresponding strain from 0.1 to 0.21. Our study reveals the remarkable mechanical characteristics of borophene films.

86 citations

Journal ArticleDOI
TL;DR: A cohesive fracture model that combines tension, compression and shear material behavior is implemented into the hybrid continuum-discrete element method, i.e., Universal Distinct Element Code (UDEC), to simulate fracturing process in rock dynamic tests as discussed by the authors.

86 citations

Journal ArticleDOI
TL;DR: Flash as mentioned in this paper is a sequential model-based method that sequentially explores the configuration space by reflecting on the configurations evaluated so far to determine the next best configuration to explore, which reduces the effort required to find the better configuration.
Abstract: Finding good configurations of a software system is often challenging since the number of configuration options can be large. Software engineers often make poor choices about configuration or, even worse, they usually use a sub-optimal configuration in production, which leads to inadequate performance. To assist engineers in finding the better configuration, this article introduces Flash , a sequential model-based method that sequentially explores the configuration space by reflecting on the configurations evaluated so far to determine the next best configuration to explore. Flash scales up to software systems that defeat the prior state-of-the-art model-based methods in this area. Flash runs much faster than existing methods and can solve both single-objective and multi-objective optimization problems. The central insight of this article is to use the prior knowledge of the configuration space (gained from prior runs) to choose the next promising configuration. This strategy reduces the effort (i.e., number of measurements) required to find the better configuration. We evaluate Flash using 30 scenarios based on 7 software systems to demonstrate that Flash saves effort in 100 and 80 percent of cases in single-objective and multi-objective problems respectively by up to several orders of magnitude compared to state-of-the-art techniques.

86 citations


Authors

Showing all 1443 results

NameH-indexPapersCitations
Timon Rabczuk9972735893
Adri C. T. van Duin7948926911
Paolo Rosso5654112757
Xiaoying Zhuang5427110082
Benno Stein533409880
Jin-Wu Jiang521757661
Gordon Wetzstein512589793
Goangseup Zi451538411
Bohayra Mortazavi441625802
Thorsten Hennig-Thurau4412317542
Jörg Hoffmann402007785
Martin Potthast401906563
Pedro M. A. Areias381075908
Amir Mosavi384326209
Guido De Roeck382748063
Network Information
Related Institutions (5)
Delft University of Technology
94.4K papers, 2.7M citations

83% related

Georgia Institute of Technology
119K papers, 4.6M citations

83% related

Carnegie Mellon University
104.3K papers, 5.9M citations

83% related

Eindhoven University of Technology
52.9K papers, 1.5M citations

82% related

Microsoft
86.9K papers, 4.1M citations

82% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202321
202260
2021224
2020249
2019247
2018273