scispace - formally typeset
Search or ask a question
Institution

Beihang University

EducationBeijing, China
About: Beihang University is a education organization based out in Beijing, China. It is known for research contribution in the topics: Computer science & Control theory. The organization has 67002 authors who have published 73507 publications receiving 975691 citations. The organization is also known as: Beijing University of Aeronautics and Astronautics.


Papers
More filters
Journal ArticleDOI
M. Aguilar, D. Aisa1, Behcet Alpat, A. Alvino  +291 moreInstitutions (33)
TL;DR: In this paper, a precise measurement of the proton flux in primary cosmic rays with rigidity (momentum/charge) from 1.GV to 1.8TV is presented based on 300 million events.
Abstract: A precise measurement of the proton flux in primary cosmic rays with rigidity (momentum/charge) from 1 GV to 1.8 TV is presented based on 300 million events. Knowledge of the rigidity dependence of the proton flux is important in understanding the origin, acceleration, and propagation of cosmic rays. We present the detailed variation with rigidity of the flux spectral index for the first time. The spectral index progressively hardens at high rigidities.

783 citations

Journal ArticleDOI
18 May 2018-Science
TL;DR: This work doped SnSe with bromine to make n-type SnSe crystals with the overlapping interlayer charge density (3D charge transport), a promising n- type thermoelectric material with electrons as the charge carriers and provides a new strategy to enhance out-of-plane electrical transport properties without degrading thermal properties.
Abstract: Thermoelectric technology enables the harvest of waste heat and its direct conversion into electricity. The conversion efficiency is determined by the materials figure of merit ZT . Here we show a maximum ZT of ~2.8 ± 0.5 at 773 kelvin in n-type tin selenide (SnSe) crystals out of plane. The thermal conductivity in layered SnSe crystals is the lowest in the out-of-plane direction [two-dimensional (2D) phonon transport]. We doped SnSe with bromine to make n-type SnSe crystals with the overlapping interlayer charge density (3D charge transport). A continuous phase transition increases the symmetry and diverges two converged conduction bands. These two factors improve carrier mobility, while preserving a large Seebeck coefficient. Our findings can be applied in 2D layered materials and provide a new strategy to enhance out-of-plane electrical transport properties without degrading thermal properties.

777 citations

Journal ArticleDOI
TL;DR: Basic concepts of energy-efficient communications are first introduced and then existing fundamental works and advanced techniques for energy efficiency are summarized, including information-theoretic analysis, OFDMA networks, MIMO techniques, relay transmission, and resource allocation for signaling.
Abstract: With explosive growth of high-data-rate applications, more and more energy is consumed in wireless networks to guarantee quality of service. Therefore, energy-efficient communications have been paid increasing attention under the background of limited energy resource and environmental- friendly transmission behaviors. In this article, basic concepts of energy-efficient communications are first introduced and then existing fundamental works and advanced techniques for energy efficiency are summarized, including information-theoretic analysis, OFDMA networks, MIMO techniques, relay transmission, and resource allocation for signaling. Some valuable topics in energy-efficient design are also identified for future research.

753 citations

Journal ArticleDOI
Fei Tao1, Meng Zhang1
TL;DR: A novel concept of digital twin shop-floor (DTS) based on digital twin is explored and its four key components are discussed, including physicalShop-floor, virtual shop- Floor, shop- floor service system, and shop-ground digital twin data.
Abstract: With the developments and applications of the new information technologies, such as cloud computing, Internet of Things, big data, and artificial intelligence, a smart manufacturing era is coming. At the same time, various national manufacturing development strategies have been put forward, such as Industry 4.0 , Industrial Internet , manufacturing based on Cyber-Physical System , and Made in China 2025 . However, one of specific challenges to achieve smart manufacturing with these strategies is how to converge the manufacturing physical world and the virtual world, so as to realize a series of smart operations in the manufacturing process, including smart interconnection, smart interaction, smart control and management, etc. In this context, as a basic unit of manufacturing, shop-floor is required to reach the interaction and convergence between physical and virtual spaces, which is not only the imperative demand of smart manufacturing, but also the evolving trend of itself. Accordingly, a novel concept of digital twin shop-floor (DTS) based on digital twin is explored and its four key components are discussed, including physical shop-floor, virtual shop-floor, shop-floor service system, and shop-floor digital twin data. What is more, the operation mechanisms and implementing methods for DTS are studied and key technologies as well as challenges ahead are investigated, respectively.

741 citations

Journal ArticleDOI
TL;DR: In this article, the theoretical energy densities of Li-ion batteries and a comparison of Li, Na, Mg, Al, Zn-based batteries, Li-storage capacities of the electrode materials and conversion reactions for energy storage, in addition to resource and environmental concerns, are analyzed.
Abstract: The average increase in the rate of the energy density of secondary batteries has been about 3% in the past 60 years. Obviously, a great breakthrough is needed in order to increase the energy density from the current 210 Wh kg−1 of Li-ion batteries to the ambitious target of 500–700 Wh kg−1 to satisfy application in electrical vehicles. A thermodynamic calculation on the theoretical energy densities of 1172 systems is performed and energy storage mechanisms are discussed, aiming to determine the theoretical and practical limits of storing chemical energy and to screen possible systems. Among all calculated systems, the Li/F2 battery processes the highest energy density and the Li/O2 battery ranks as the second highest, theoretically about ten times higher than current Li-ion batteries. In this paper, energy densities of Li-ion batteries and a comparison of Li, Na, Mg, Al, Zn-based batteries, Li-storage capacities of the electrode materials and conversion reactions for energy storage, in addition to resource and environmental concerns, are analyzed.

739 citations


Authors

Showing all 67500 results

NameH-indexPapersCitations
Yi Chen2174342293080
H. S. Chen1792401178529
Alan J. Heeger171913147492
Lei Jiang1702244135205
Wei Li1581855124748
Shu-Hong Yu14479970853
Jian Zhou128300791402
Chao Zhang127311984711
Igor Katkov12597271845
Tao Zhang123277283866
Nicholas A. Kotov12357455210
Shi Xue Dou122202874031
Li Yuan12194867074
Robert O. Ritchie12065954692
Haiyan Wang119167486091
Network Information
Related Institutions (5)
Harbin Institute of Technology
109.2K papers, 1.6M citations

96% related

Tsinghua University
200.5K papers, 4.5M citations

92% related

University of Science and Technology of China
101K papers, 2.4M citations

92% related

Nanyang Technological University
112.8K papers, 3.2M citations

92% related

City University of Hong Kong
60.1K papers, 1.7M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023205
20221,178
20216,768
20206,916
20197,080