scispace - formally typeset
Search or ask a question
Institution

Beihang University

EducationBeijing, China
About: Beihang University is a education organization based out in Beijing, China. It is known for research contribution in the topics: Computer science & Control theory. The organization has 67002 authors who have published 73507 publications receiving 975691 citations. The organization is also known as: Beijing University of Aeronautics and Astronautics.


Papers
More filters
Journal ArticleDOI
TL;DR: Investigation of the effects of age, gender and conformity tendency on Chinese pedestrians' intention to cross the road in potentially dangerous situations finds that people who showed greater tendencies towards social conformity had stronger road crossing intentions than low conformity people for both scenarios.

210 citations

Journal ArticleDOI
TL;DR: This paper represents an attempt to apply second-order cone programming, a branch of convex optimization, to the class of highly nonlinear trajectory optimization problems in entry flight with a combination of successive linearization and relaxation techniques.
Abstract: Convex optimization has found wide applications in recent years due to its unique theoretical advantages and the polynomial-time complexity of state-of-the-art solution algorithms for convex programming This paper represents an attempt to apply second-order cone programming, a branch of convex optimization, to the class of highly nonlinear trajectory optimization problems in entry flight The foremost challenge in applying convex optimization in most aerospace engineering problems lies in the nonlinearity and nonconvexity of the problem Exclusive reliance on linearization does not always work well, as is the case in entry trajectory optimization This paper focuses on how to formulate realistic, highly constrained entry trajectory optimization problems in a fashion suitable to be solved by second-order cone programming with a combination of successive linearization and relaxation techniques Rigorous analysis is conducted to support the soundness of the approach Numerical demonstrations are provided to

210 citations

Journal ArticleDOI
TL;DR: In this article, a simple principle is proposed to achieve anisotropic underwater oleophobicity by adjusting the hydrophilicity of surface composition and the anisotropically-wetting microtextures.
Abstract: Surfaces with anisotropic wettability, widely found in nature, have inspired the development of one-dimensional water control on surfaces relying on the well-arranged surface features. Controlling the wetting behavior of organic liquids, especially the motion of oil fluid on surfaces, is of great importance for a broad range of applications including oil transportation, oil-repellent coatings, and water/oil separation. However, anisotropic oil-wetting surfaces remain unexplored. Here, the unique skin of a filefish Navodon septentrionalis shows anisotropic oleophobicity under water. On the rough skin of N. septentrionalis, oil droplets tend to roll off in a head-to-tail direction, but pin in the opposite direction. This pronounced wetting anisotropy results from the oriented hook-like spines arrayed on the fish skin. It inspires further exploration of the artificial anisotropic underwater oleophobic surfaces: By mimicking the oriented hook-like microstructure on a polydimethylsiloxane layer via soft lithography and subsequent oxygen-plasma treatment to make the PDMS hydrophilic, artificial fish skin is fabricated which has similar anisotropic underwater oleophobicity. Drawn from the processing of artificial fish skin, a simple principle is proposed to achieve anisotropic underwater oleophobicity by adjusting the hydrophilicity of surface composition and the anisotropic microtextures. This principle can guide the simple mass manufacturing of various inexpensive high surface-energy materials, and the principle is demonstrated on commercial cloth corduroy. This study will profit broad applications involving low-energy, low-expense oil transportation, underwater oil collection, and oil-repellant coatings on ship hulls and oil pipelines.

209 citations

Journal ArticleDOI
TL;DR: The results show that the proposed sub-optimal solution achieves close-to-bound sum-rate performance, which is significantly better than that of time-division multiple access.
Abstract: In this paper, we explore non-orthogonal multiple access (NOMA) in millimeter-wave (mm-wave) communications (mm-wave-NOMA). In particular, we consider a typical problem, i.e., maximization of the sum rate of a 2-user mm-wave-NOMA system. In this problem, we need to find the beamforming vector to steer towards the two users simultaneously subject to an analog beamforming structure, while allocating appropriate power to them. As the problem is non-convex and may not be converted to a convex problem with simple manipulations, we propose a suboptimal solution to this problem. The basic idea is to decompose the original joint beamforming and power allocation problem into two sub-problems which are relatively easy to solve: one is a power and beam gain allocation problem, and the other is a beamforming problem under a constant-modulus constraint. Extension of the proposed solution from 2-user mm-wave-NOMA to more-user mm-wave-NOMA is also discussed. Extensive performance evaluations are conducted to verify the rational of the proposed solution, and the results also show that the proposed sub-optimal solution achieves close-to-bound sum-rate performance, which is significantly better than that of time-division multiple access.

209 citations


Authors

Showing all 67500 results

NameH-indexPapersCitations
Yi Chen2174342293080
H. S. Chen1792401178529
Alan J. Heeger171913147492
Lei Jiang1702244135205
Wei Li1581855124748
Shu-Hong Yu14479970853
Jian Zhou128300791402
Chao Zhang127311984711
Igor Katkov12597271845
Tao Zhang123277283866
Nicholas A. Kotov12357455210
Shi Xue Dou122202874031
Li Yuan12194867074
Robert O. Ritchie12065954692
Haiyan Wang119167486091
Network Information
Related Institutions (5)
Harbin Institute of Technology
109.2K papers, 1.6M citations

96% related

Tsinghua University
200.5K papers, 4.5M citations

92% related

University of Science and Technology of China
101K papers, 2.4M citations

92% related

Nanyang Technological University
112.8K papers, 3.2M citations

92% related

City University of Hong Kong
60.1K papers, 1.7M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023205
20221,178
20216,768
20206,916
20197,080