scispace - formally typeset
Search or ask a question
Institution

Beihang University

EducationBeijing, China
About: Beihang University is a education organization based out in Beijing, China. It is known for research contribution in the topics: Control theory & Microstructure. The organization has 67002 authors who have published 73507 publications receiving 975691 citations. The organization is also known as: Beijing University of Aeronautics and Astronautics.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a classification of gas sensing technologies is given, based on the variation of electrical and other properties, including metal oxide semiconductors, polymers, carbon nanotubes, and moisture absorbing materials.
Abstract: Sensing technology has been widely investigated and utilized for gas detection. Due to the different applicability and inherent limitations of different gas sensing technologies, researchers have been working on different scenarios with enhanced gas sensor calibration. This paper reviews the descriptions, evaluation, comparison and recent developments in existing gas sensing technologies. A classification of sensing technologies is given, based on the variation of electrical and other properties. Detailed introduction to sensing methods based on electrical variation is discussed through further classification according to sensing materials, including metal oxide semiconductors, polymers, carbon nanotubes, and moisture absorbing materials. Methods based on other kinds of variations such as optical, calorimetric, acoustic and gas-chromatographic, are presented in a general way. Several suggestions related to future development are also discussed. Furthermore, this paper focuses on sensitivity and selectivity for performance indicators to compare different sensing technologies, analyzes the factors that influence these two indicators, and lists several corresponding improved approaches.

201 citations

Journal ArticleDOI
TL;DR: In this article, the equations of motion of an insect with flapping wings were derived and then simplified to that of a flying body using the "rigid body" assumption, and the longitudinal dynamic flight stability of four insects (hoverfly, cranefly, dronefly and hawkmoth) in hovering flight was studied.
Abstract: The equations of motion of an insect with flapping wings are derived and then simplified to that of a flying body using the “rigid body” assumption. On the basis of the simplified equations of motion, the longitudinal dynamic flight stability of four insects (hoverfly, cranefly, dronefly and hawkmoth) in hovering flight is studied (the mass of the insects ranging from 11 to 1,648 mg and wingbeat frequency from 26 to 157 Hz). The method of computational fluid dynamics is used to compute the aerodynamic derivatives and the techniques of eigenvalue and eigenvector analysis are used to solve the equations of motion. The validity of the “rigid body” assumption is tested and how differences in size and wing kinematics influence the applicability of the “rigid body” assumption is investigated. The primary findings are: (1) For insects considered in the present study and those with relatively high wingbeat frequency (hoverfly, drone fly and bumblebee), the “rigid body” assumption is reasonable, and for those with relatively low wingbeat frequency (cranefly and howkmoth), the applicability of the “rigid body” assumption is questionable. (2) The same three natural modes of motion as those reported recently for a bumblebee are identified, i.e., one unstable oscillatory mode, one stable fast subsidence mode and one stable slow subsidence mode. (3) Approximate analytical expressions of the eigenvalues, which give physical insight into the genesis of the natural modes of motion, are derived. The expressions identify the speed derivative Mu (pitching moment produced by unit horizontal speed) as the primary source of the unstable oscillatory mode and the stable fast subsidence mode and Zw (vertical force produced by unit vertical speed) as the primary source of the stable slow subsidence mode.

201 citations

Journal ArticleDOI
TL;DR: Rigorous analysis is provided to demonstrate that the fast terminal SMC law can offer a higher accuracy than the traditional linear SMClaw and show the advantages of the present discrete-time fast terminalSMC approach over some existing approaches, such as discrete- time linear sliding mode control approach and the PID control method.
Abstract: The main objective of this paper is to solve the position tracking control problem for the permanent magnet linear motor by using the discrete-time fast terminal sliding mode control (SMC) method. Specifically, based on Euler's discretization technique, the approximate discrete-time model is first obtained and analyzed. Then, by introducing a new type of discrete-time fast terminal sliding surface, an improved discrete-time fast SMC method is developed and an equivalent-control-based fast terminal SMC law is subsequently designed. Rigorous analysis is provided to demonstrate that the fast terminal SMC law can offer a higher accuracy than the traditional linear SMC law. Numerical simulations and experimental results are finally performed to demonstrate the effectiveness of the proposed approach and show the advantages of the present discrete-time fast terminal SMC approach over some existing approaches, such as discrete-time linear sliding mode control approach and the PID control method.

201 citations

Proceedings ArticleDOI
21 Jun 2011
TL;DR: WSN has the features of high bandwidth and rate, non-line-transmission ability, large-scale data collection and high cost-effective, and the capability of video monitoring, which can not be realized with ZigBee.
Abstract: The Internet of Things(IoT) and Smart Grid are of great importance in promoting and guiding development of information technology and economic. At Present, the application of the IoT develops rapidly, but due to the special requirements of some applications, the existing technology can not meet them very good. Much research work is doing to build IoT. WiFi-based Wireless Sensor Network(WSN) has the features of high bandwidth and rate, non-line-transmission ability, large-scale data collection and high cost-effective, and it has the capability of video monitoring, which can not be realized with ZigBee. The research on WiFi-based WSN and its application has high practical significance to the development of the Internet of Things and Smart Grid. Based on the current research work of applications in the Internet of Things and the characteristics of WiFi-based WSN, this paper discusses the application of WiFi-based WSN in Internet of Things, which includes Smart Grid, Smart Agriculture and Intelligent environment protection.

200 citations


Authors

Showing all 67500 results

NameH-indexPapersCitations
Yi Chen2174342293080
H. S. Chen1792401178529
Alan J. Heeger171913147492
Lei Jiang1702244135205
Wei Li1581855124748
Shu-Hong Yu14479970853
Jian Zhou128300791402
Chao Zhang127311984711
Igor Katkov12597271845
Tao Zhang123277283866
Nicholas A. Kotov12357455210
Shi Xue Dou122202874031
Li Yuan12194867074
Robert O. Ritchie12065954692
Haiyan Wang119167486091
Network Information
Related Institutions (5)
Harbin Institute of Technology
109.2K papers, 1.6M citations

96% related

Tsinghua University
200.5K papers, 4.5M citations

92% related

University of Science and Technology of China
101K papers, 2.4M citations

92% related

Nanyang Technological University
112.8K papers, 3.2M citations

92% related

City University of Hong Kong
60.1K papers, 1.7M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023205
20221,178
20216,767
20206,916
20197,080