scispace - formally typeset
Search or ask a question
Institution

Beihang University

EducationBeijing, China
About: Beihang University is a education organization based out in Beijing, China. It is known for research contribution in the topics: Control theory & Microstructure. The organization has 67002 authors who have published 73507 publications receiving 975691 citations. The organization is also known as: Beijing University of Aeronautics and Astronautics.


Papers
More filters
Proceedings ArticleDOI
Xingchen Ma1, Hongyu Yang1, Qiang Chen1, Di Huang1, Yunhong Wang1 
16 Oct 2016
TL;DR: A deep model is proposed, namely DepAudioNet, to encode the depression related characteristics in the vocal channel, combining Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) to deliver a more comprehensive audio representation.
Abstract: This paper presents a novel and effective audio based method on depression classification. It focuses on two important issues, \emph{i.e.} data representation and sample imbalance, which are not well addressed in literature. For the former one, in contrast to traditional shallow hand-crafted features, we propose a deep model, namely DepAudioNet, to encode the depression related characteristics in the vocal channel, combining Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) to deliver a more comprehensive audio representation. For the latter one, we introduce a random sampling strategy in the model training phase to balance the positive and negative samples, which largely alleviates the bias caused by uneven sample distribution. Evaluations are carried out on the DAIC-WOZ dataset for the Depression Classification Sub-challenge (DCC) at the 2016 Audio-Visual Emotion Challenge (AVEC), and the experimental results achieved clearly demonstrate the effectiveness of the proposed approach.

183 citations

Journal ArticleDOI
TL;DR: A novel strain was isolated from municipal activated sludge and identified as Acinetobacter sp.

183 citations

Journal ArticleDOI
TL;DR: It is demonstrated that zigzag carbon is a promising electrocatalyst for low-cost and durable proton exchange membrane fuel cells and is the most active site for oxygen reduction among several types of carbon defects on graphene nanoribbons in acid electrolyte.
Abstract: Non-precious-metal or metal-free catalysts with stability are desirable but challenging for proton exchange membrane fuel cells. Here we partially unzip a multiwall carbon nanotube to synthesize zigzag-edged graphene nanoribbons with a carbon nanotube backbone for electrocatalysis of oxygen reduction in proton exchange membrane fuel cells. Zigzag carbon exhibits a peak areal power density of 0.161 W cm−2 and a peak mass power density of 520 W g−1, superior to most non-precious-metal electrocatalysts. Notably, the stability of zigzag carbon is improved in comparison with a representative iron-nitrogen-carbon catalyst in a fuel cell with hydrogen/oxygen gases at 0.5 V. Density functional theory calculation coupled with experimentation reveal that a zigzag carbon atom is the most active site for oxygen reduction among several types of carbon defects on graphene nanoribbons in acid electrolyte. This work demonstrates that zigzag carbon is a promising electrocatalyst for low-cost and durable proton exchange membrane fuel cells. Cost and stability of catalysts hinder widespread use of proton exchange membrane fuel cells. Here the authors synthesize zigzag-edged graphene nanoribbons for electrocatalysis of oxygen reduction. Employment of such a metal-free catalyst in a fuel cell yields remarkable power density and durability.

183 citations


Authors

Showing all 67500 results

NameH-indexPapersCitations
Yi Chen2174342293080
H. S. Chen1792401178529
Alan J. Heeger171913147492
Lei Jiang1702244135205
Wei Li1581855124748
Shu-Hong Yu14479970853
Jian Zhou128300791402
Chao Zhang127311984711
Igor Katkov12597271845
Tao Zhang123277283866
Nicholas A. Kotov12357455210
Shi Xue Dou122202874031
Li Yuan12194867074
Robert O. Ritchie12065954692
Haiyan Wang119167486091
Network Information
Related Institutions (5)
Harbin Institute of Technology
109.2K papers, 1.6M citations

96% related

Tsinghua University
200.5K papers, 4.5M citations

92% related

University of Science and Technology of China
101K papers, 2.4M citations

92% related

Nanyang Technological University
112.8K papers, 3.2M citations

92% related

City University of Hong Kong
60.1K papers, 1.7M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023205
20221,178
20216,767
20206,916
20197,080