scispace - formally typeset
Search or ask a question
Institution

Beihang University

EducationBeijing, China
About: Beihang University is a education organization based out in Beijing, China. It is known for research contribution in the topics: Computer science & Control theory. The organization has 67002 authors who have published 73507 publications receiving 975691 citations. The organization is also known as: Beijing University of Aeronautics and Astronautics.


Papers
More filters
Proceedings ArticleDOI
29 Jul 2017
TL;DR: The authors proposed to inject corpus-level constraints for calibrating existing structured prediction models and design an algorithm based on Lagrangian relaxation for collective inference, which results in almost no performance loss for the underlying recognition task but decreases the magnitude of bias amplification.
Abstract: Language is increasingly being used to de-fine rich visual recognition problems with supporting image collections sourced from the web. Structured prediction models are used in these tasks to take advantage of correlations between co-occurring labels and visual input but risk inadvertently encoding social biases found in web corpora. In this work, we study data and models associated with multilabel object classification and visual semantic role labeling. We find that (a) datasets for these tasks contain significant gender bias and (b) models trained on these datasets further amplify existing bias. For example, the activity cooking is over 33% more likely to involve females than males in a training set, and a trained model further amplifies the disparity to 68% at test time. We propose to inject corpus-level constraints for calibrating existing structured prediction models and design an algorithm based on Lagrangian relaxation for collective inference. Our method results in almost no performance loss for the underlying recognition task but decreases the magnitude of bias amplification by 47.5% and 40.5% for multilabel classification and visual semantic role labeling, respectively。

560 citations

Journal ArticleDOI
TL;DR: The results demonstrate that hierarchical metal sulfides can serve as highly efficient all-pH (pH = 0-14) electrocatalysts for overall water splitting.
Abstract: The design of low-cost yet high-efficiency electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) over a wide pH range is highly challenging. We now report a hierarchical co-assembly of interacting MoS2 and Co9S8 nanosheets attached on Ni3S2 nanorod arrays which are supported on nickel foam (NF). This tiered structure endows high performance toward HER and OER over a very broad pH range. By adjusting the molar ratio of the Co:Mo precursors, we have created CoMoNiS-NF- xy composites ( x: y means Co:Mo molar ratios ranging from 5:1 to 1:3) with controllable morphology and composition. The three-dimensional composites have an abundance of active sites capable of universal pH catalytic HER and OER activity. The CoMoNiS-NF-31 demonstrates the best electrocatalytic activity, giving ultralow overpotentials (113, 103, and 117 mV for HER and 166, 228, and 405 mV for OER) to achieve a current density of 10 mA cm-2 in alkaline, acidic, and neutral electrolytes, respectively. It also shows a remarkable balance between electrocatalytic activity and stability. Based on the distinguished catalytic performance of CoMoNiS-NF-31 toward HER and OER, we demonstrate a two-electrode electrolyzer performing water electrolysis over a wide pH range, with low cell voltages of 1.54, 1.45, and 1.80 V at 10 mA cm-2 in alkaline, acidic, and neutral media, respectively. First-principles calculations suggest that the high OER activity arises from electron transfer from Co9S8 to MoS2 at the interface, which alters the binding energies of adsorbed species and decreases overpotentials. Our results demonstrate that hierarchical metal sulfides can serve as highly efficient all-pH (pH = 0-14) electrocatalysts for overall water splitting.

559 citations

Journal ArticleDOI
Wei-Hong Zhong1, Fan Li1, Zuoguang Zhang1, Lulu Song1, Zhimin Li2 
TL;DR: In this article, a short fiber reinforced composite used in rapid prototyping and manufacturing (RP&M) was modified by incorporating several different property modifiers including the short glass fiber, plasticizer, and compatibilizer.
Abstract: Addressed in this paper are critical material property issues related to the short fiber reinforced composite used in rapid prototyping and manufacturing (RP&M). Acrylonitrile–butadiene–styrene (ABS) copolymer has been a popular choice of material used in fused deposition modeling (FDM), a commonly used RP&M process. However, conventional ABS polymers in the filamentary form for FDM are known to be of low strength and hardness. In order to overcome this deficiency, ABS was modified by incorporating several different property modifiers including the short glass fiber, plasticizer, and compatibilizer. Glass fibers were found to significantly improve the strength of an ABS filament at the expense of reduced flexibility and handleability. The latter two properties of glass fiber reinforced ABS filaments were improved by adding a small amount of plasticizer and compatibilizer. The resulting composite filament, prepared by extrusion, was found to work well with a FDM machine.

557 citations

Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper investigated the relationship between the transmissibility of COVID-19 and the temperature/humidity, by controlling for various demographic, socioeconomic, geographic, healthcare and policy factors and correcting for cross-sectional correlation.
Abstract: With the ongoing global pandemic of COVID-19, a question is whether the coming summer in the northern hemisphere will reduce the transmission intensity of COVID-19 with increased humidity and temperature. In this paper, we investigate this problem using the data from the cases with symptom-onset dates from January 19 to February 10, 2020 for 100 Chinese cities, and cases with confirmed dates from March 15 to April 25 for 1,005 U.S. counties. Statistical analysis is performed to assess the relationship between the transmissibility of COVID-19 and the temperature/humidity, by controlling for various demographic, socio-economic, geographic, healthcare and policy factors and correcting for cross-sectional correlation. We find a similar influence of the temperature and relative humidity on effective reproductive number (R values) of COVID-19 for both China and the U.S. before lockdown in both countries: one-degree Celsius increase in temperature reduces R value by about 0.023 (0.026 (95% CI [-0.0395,-0.0125]) in China and 0.020 (95% CI [-0.0311, -0.0096]) in the U.S.), and one percent relative humidity rise reduces R value by 0.0078 (0.0076 (95% CI [-0.0108,-0.0045]) in China and 0.0080 (95% CI [-0.0150,-0.0010]) in the U.S.). If assuming a 30 degree and 25 percent increase in temperature and relative humidity from winter to summer in the northern hemisphere, we expect the R values to decline about 0.89 (0.69 by temperature and 0.20 by humidity). Moreover, after the lockdowns in China and the U.S., temperature and relative humidity still play an important role in reducing the R values but to a less extent. Given the notion that the non-intervened R values are around 2.5 to 3, only weather factors cannot make the R values below their critical condition of R<1, under which the epidemic diminishes gradually. Therefore, public health intervention such as social distancing is crucial to block the transmission of COVID-19 even in summer.

556 citations

Journal ArticleDOI
TL;DR: Two biomimetic approaches are proposed for the fabrication of high-adhesion superhydrophobic surfaces that mimic a sticky gecko's foot and microstructures with size and topography similar to that of a rose petal, which will offer innovative insights into the design of novel antibioadhesion materials.
Abstract: Super-antiwetting interfaces, such as superhydrophobic and superamphiphobic surfaces in air and superoleophobic interfaces in water, with special liquid-solid adhesion have recently attracted worldwide attention. Through tuning surface microstructures and compositions to achieve certain solid/liquid contact modes, we can effectively control the liquid-solid adhesion in a super-antiwetting state. In this Account, we review our recent progress in the design and fabrication of these bioinspired super-antiwetting interfaces with special liquid-solid adhesion. Low-adhesion superhydrophobic surfaces are biologically inspired, typically by the lotus leaf. Wettability investigated at micro- and nanoscale reveals that the low adhesion of the lotus surface originates from the composite contact mode, a microdroplet bridging several contacts, within the hierarchical structures. Recently high-adhesion superhydrophobic surfaces have also attracted research attention. These surfaces are inspired by the surfaces of gecko feet and rose petals. Accordingly, we propose two biomimetic approaches for the fabrication of high-adhesion superhydrophobic surfaces. First, to mimic a sticky gecko's foot, we designed structures with nanoscale pores that could trap air isolated from the atmosphere. In this case, the negative pressure induced by the volume change of sealed air as the droplet is pulled away from surface can produce a normal adhesive force. Second, we constructed microstructures with size and topography similar to that of a rose petal. The resulting materials hold air gaps in their nanoscale folds, controlling the superhydrophobicity in a Wenzel state on the microscale. Furthermore, we can tune the liquid-solid adhesion on the same superhydrophobic surface by dynamically controlling the orientations of microstructures without altering the surface composition. The superhydrophobic wings of the butterfly (Morpho aega) show directional adhesion: a droplet easily rolls off the surface of wings along one direction but is pinned tightly against rolling in the opposite direction. Through coordinating the stimuli-responsive materials and appropriate surface-geometry structures, we developed materials with reversible transitions between a low-adhesive rolling state and a high-adhesive pinning state for water droplets on the superhydrophobic surfaces, which were controlled by temperature and magnetic and electric fields. In addition to the experiments done in air, we also demonstrated bioinspired superoleophobic water/solid interfaces with special adhesion to underwater oil droplets and platelets. In these experiments, the high content of water trapped in the micro- and nanostructures played a key role in reducing the adhesion of the oil droplets and platelets. These findings will offer innovative insights into the design of novel antibioadhesion materials.

552 citations


Authors

Showing all 67500 results

NameH-indexPapersCitations
Yi Chen2174342293080
H. S. Chen1792401178529
Alan J. Heeger171913147492
Lei Jiang1702244135205
Wei Li1581855124748
Shu-Hong Yu14479970853
Jian Zhou128300791402
Chao Zhang127311984711
Igor Katkov12597271845
Tao Zhang123277283866
Nicholas A. Kotov12357455210
Shi Xue Dou122202874031
Li Yuan12194867074
Robert O. Ritchie12065954692
Haiyan Wang119167486091
Network Information
Related Institutions (5)
Harbin Institute of Technology
109.2K papers, 1.6M citations

96% related

Tsinghua University
200.5K papers, 4.5M citations

92% related

University of Science and Technology of China
101K papers, 2.4M citations

92% related

Nanyang Technological University
112.8K papers, 3.2M citations

92% related

City University of Hong Kong
60.1K papers, 1.7M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023205
20221,178
20216,768
20206,916
20197,080