scispace - formally typeset
Search or ask a question
Institution

Beihang University

EducationBeijing, China
About: Beihang University is a education organization based out in Beijing, China. It is known for research contribution in the topics: Control theory & Microstructure. The organization has 67002 authors who have published 73507 publications receiving 975691 citations. The organization is also known as: Beijing University of Aeronautics and Astronautics.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a scalable one-pot template-free synthesis strategy was employed to fabricate CuO-incorporated TiO2 hollow microspheres in large scale, which possess unique structural characteristics, namely, large surface area and a hierarchical nano-architecture composed of a hollow macroporous core connected with large mesopores in the shell.
Abstract: In this study, a scalable one-pot template-free synthesis strategy was employed to fabricate CuO-incorporated TiO2 hollow microspheres in large scale. The as-prepared hollow spherical TiO2 nanoparticles possess unique structural characteristics, namely, large surface area and a hierarchical nanoarchitecture composed of a hollow macroporous core connected with large mesopores in the shell. The large surface area provides a great number of surface active sites for the reactant adsorption and reaction whereas the hierarchical nanoarchitecture enables fast mass transport of reactant and product molecules within the porous framework. In addition, the hollow macroporous core–mesoporous shell nanostructure favors multilight scattering/reflection, resulting in enhanced harvesting of exciting light. Furthermore, the incorporated CuO clusters work efficiently as a cocatalyst to improve the photocatalytic activity. As a result, the CuO-incorporated TiO2 hollow microsphere catalyst demonstrates much higher photocatal...

173 citations

Journal ArticleDOI
TL;DR: In this paper, an anisotropic homogeneous model describing the jellyroll and the battery shell is established and validated through compression, indentation, and bending tests at quasi-static loadings.

173 citations

Journal ArticleDOI
TL;DR: TEM examination on the SLM-processed 316L stainless steel samples reveals a significantly high density of dislocations and a great number of twinning within nano-needles, suggesting that the plastic deformation has been governed by both gliding of disLocations and twinning deformation, which is believed to be responsible for the simultaneous acquisition of superior strength and ductility.
Abstract: 316L stainless steel samples have been prepared by selective laser melting (SLM) using a pulsed laser mode and different laser powers and scanning patterns. The as-fabricated samples were found to be dominated by clusters of nano-sized γ needles or cells. TEM imaging shows that these needles contain a high population of dislocations while TEM-EDX analysis reveals high chemical homogeneity throughout the as-fabricated samples as evidenced by the fact that there is even no micro-/nano-segregation at interfaces between neighbouring γ needles. The good chemical homogeneity is attributed to the extremely high cooling rate after SLM (>106 °C/s) and the formation of Si- and Mn-oxides that distribute randomly in the current samples. The laser-processed samples show both superior strength and ductility as compared with conventionally manufactured counterparts. TEM examination on the deformed specimens reveals a significantly high density of dislocations and a great number of twinning within nano-needles, suggesting that the plastic deformation has been governed by both gliding of dislocations and twinning deformation, which is believed to be responsible for the simultaneous acquisition of superior strength and ductility. Finally, laser power shows a much more dominant role than laser scanning pattern in porosity and grain size development for the SLM-processed 316L stainless steel samples.

173 citations

Journal ArticleDOI
17 Jul 2019
TL;DR: This paper proposes a perceptual-sensitive generative adversarial network (PS-GAN) that can simultaneously enhance the visual fidelity and the attacking ability for the adversarial patch, and treats the patch generation as a patch-to-patch translation via an adversarial process.
Abstract: Deep neural networks (DNNs) are vulnerable to adversarial examples where inputs with imperceptible perturbations mislead DNNs to incorrect results. Recently, adversarial patch, with noise confined to a small and localized patch, emerged for its easy accessibility in real-world. However, existing attack strategies are still far from generating visually natural patches with strong attacking ability, since they often ignore the perceptual sensitivity of the attacked network to the adversarial patch, including both the correlations with the image context and the visual attention. To address this problem, this paper proposes a perceptual-sensitive generative adversarial network (PS-GAN) that can simultaneously enhance the visual fidelity and the attacking ability for the adversarial patch. To improve the visual fidelity, we treat the patch generation as a patch-to-patch translation via an adversarial process, feeding any types of seed patch and outputting the similar adversarial patch with high perceptual correlation with the attacked image. To further enhance the attacking ability, an attention mechanism coupled with adversarial generation is introduced to predict the critical attacking areas for placing the patches, which can help producing more realistic and aggressive patches. Extensive experiments under semi-whitebox and black-box settings on two large-scale datasets GTSRB and ImageNet demonstrate that the proposed PS-GAN outperforms state-of-the-art adversarial patch attack methods.

173 citations

Journal ArticleDOI
01 Mar 2018
TL;DR: The anomalous Hall effect is allowed by symmetry in some non-collinear antiferromagnets and is associated with Bloch-band topological features as discussed by the authors, which is of interest in the development of low power electronic devices, but such devices are likely to demand electrical control over the effect.
Abstract: The anomalous Hall effect is allowed by symmetry in some non-collinear antiferromagnets and is associated with Bloch-band topological features. This topological anomalous Hall effect is of interest in the development of low-power electronic devices, but such devices are likely to demand electrical control over the effect. Here we report the observation of the anomalous Hall effect in high-quality thin films of the cubic non-collinear antiferromagnet Mn3Pt epitaxially grown on ferroelectric BaTiO3 substrates. We demonstrate that epitaxial strain can alter the anomalous Hall conductivity of the Mn3Pt films by more than an order of magnitude. Furthermore, we show that the anomalous Hall effect can be turned on and off by applying a small electric field to the BaTiO3 substrate when the heterostructure is at a temperature of around 360 K and the Mn3Pt is close to the phase transition between a low-temperature non-collinear antiferromagnetic state and a high-temperature collinear antiferromagnetic state. The switching effect is due to piezoelectric strain transferred from the BaTiO3 substrate to the Mn3Pt film by interfacial strain mediation.

173 citations


Authors

Showing all 67500 results

NameH-indexPapersCitations
Yi Chen2174342293080
H. S. Chen1792401178529
Alan J. Heeger171913147492
Lei Jiang1702244135205
Wei Li1581855124748
Shu-Hong Yu14479970853
Jian Zhou128300791402
Chao Zhang127311984711
Igor Katkov12597271845
Tao Zhang123277283866
Nicholas A. Kotov12357455210
Shi Xue Dou122202874031
Li Yuan12194867074
Robert O. Ritchie12065954692
Haiyan Wang119167486091
Network Information
Related Institutions (5)
Harbin Institute of Technology
109.2K papers, 1.6M citations

96% related

Tsinghua University
200.5K papers, 4.5M citations

92% related

University of Science and Technology of China
101K papers, 2.4M citations

92% related

Nanyang Technological University
112.8K papers, 3.2M citations

92% related

City University of Hong Kong
60.1K papers, 1.7M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023205
20221,178
20216,767
20206,916
20197,080