scispace - formally typeset
Search or ask a question
Institution

Beihang University

EducationBeijing, China
About: Beihang University is a education organization based out in Beijing, China. It is known for research contribution in the topics: Computer science & Control theory. The organization has 67002 authors who have published 73507 publications receiving 975691 citations. The organization is also known as: Beijing University of Aeronautics and Astronautics.


Papers
More filters
Proceedings ArticleDOI
11 Jul 2011
TL;DR: A novel and effective video enhancement algorithm for low lighting video that works by first inverting an input low-lighting video and then applying an optimized image de-haze algorithm on the inverted video to facilitate faster computation.
Abstract: We describe a novel and effective video enhancement algorithm for low lighting video. The algorithm works by first inverting an input low-lighting video and then applying an optimized image de-haze algorithm on the inverted video. To facilitate faster computation, temporal correlations between subsequent frames are utilized to expedite the calculation of key algorithm parameters. Simulation results show excellent enhancement results and 4x speed up as compared with the frame-wise enhancement algorithms.

371 citations

Journal ArticleDOI
TL;DR: Superefficient water-splitting materials comprising sub-nanometric copper clusters and quasi-amorphous cobalt sulfide supported on copper foam give a catalytic output of overall water splitting comparable with the Pt/C-IrO2 -coupled electrolyzer.
Abstract: Superefficient water-splitting materials comprising sub-nanometric copper clusters and quasi-amorphous cobalt sulfide supported on copper foam are reported. While working together at both the anode and cathode sides of an alkaline electrolyzer, this material gives a catalytic output of overall water splitting comparable with the Pt/C-IrO2 -coupled electrolyzer.

369 citations

Journal ArticleDOI
TL;DR: The results indicate that stable magnetostructural coupling is accessible in hexagonal phase-transition systems to attain the magnetoresponsive effects with broad tunability.
Abstract: The magnetostructural coupling between the structural and the magnetic transition has a crucial role in magnetoresponsive effects in a martensitic-transition system. A combination of various magnetoresponsive effects based on this coupling may facilitate the multifunctional applications of a host material. Here we demonstrate the feasibility of obtaining a stable magnetostructural coupling over a broad temperature window from 350 to 70 K, in combination with tunable magnetoresponsive effects, in MnNiGe:Fe alloys. The alloy exhibits a magnetic-field-induced martensitic transition from paramagnetic austenite to ferromagnetic martensite. The results indicate that stable magnetostructural coupling is accessible in hexagonal phase-transition systems to attain the magnetoresponsive effects with broad tunability.

368 citations

Journal ArticleDOI
TL;DR: This paper devise an efficient hierarchical codebook by jointly exploiting sub-array and deactivation (turning-off) antenna processing techniques, where closed-form expressions are provided to generate the codebook.
Abstract: In millimeter-wave communication, large antenna arrays are required to achieve high power gain by steering towards each other with narrow beams, which poses the problem to efficiently search the best beam direction in the angle domain at both Tx and Rx sides. As the exhaustive search is time consuming, hierarchical search has been widely accepted to reduce the complexity, and its performance is highly dependent on the codebook design. In this paper, we propose two basic criteria for the hierarchical codebook design, and devise an efficient hierarchical codebook by jointly exploiting sub-array and deactivation (turning-off) antenna processing techniques, where closed-form expressions are provided to generate the codebook. Performance evaluations are conducted under different system and channel models. Results show superiority of the proposed codebook over the existing alternatives.

368 citations

Journal ArticleDOI
TL;DR: A facile approach is reported to transform wood into hierarchical porous graphene using CO2 laser scribing to inspire both research and industrial interest in the development of wood-derived graphene materials and their nanodevices.
Abstract: Wood as a renewable naturally occurring resource has been the focus of much research and commercial interests in applications ranging from building construction to chemicals production. Here, a facile approach is reported to transform wood into hierarchical porous graphene using CO2 laser scribing. Studies reveal that the crosslinked lignocellulose structure inherent in wood with higher lignin content is more favorable for the generation of high-quality graphene than wood with lower lignin content. Because of its high electrical conductivity (≈10 Ω per square), graphene patterned on wood surfaces can be readily fabricated into various high-performance devices, such as hydrogen evolution and oxygen evolution electrodes for overall water splitting with high reaction rates at low overpotentials, and supercapacitors for energy storage with high capacitance. The versatility of this technique in formation of multifunctional wood hybrids can inspire both research and industrial interest in the development of wood-derived graphene materials and their nanodevices.

367 citations


Authors

Showing all 67500 results

NameH-indexPapersCitations
Yi Chen2174342293080
H. S. Chen1792401178529
Alan J. Heeger171913147492
Lei Jiang1702244135205
Wei Li1581855124748
Shu-Hong Yu14479970853
Jian Zhou128300791402
Chao Zhang127311984711
Igor Katkov12597271845
Tao Zhang123277283866
Nicholas A. Kotov12357455210
Shi Xue Dou122202874031
Li Yuan12194867074
Robert O. Ritchie12065954692
Haiyan Wang119167486091
Network Information
Related Institutions (5)
Harbin Institute of Technology
109.2K papers, 1.6M citations

96% related

Tsinghua University
200.5K papers, 4.5M citations

92% related

University of Science and Technology of China
101K papers, 2.4M citations

92% related

Nanyang Technological University
112.8K papers, 3.2M citations

92% related

City University of Hong Kong
60.1K papers, 1.7M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023205
20221,178
20216,768
20206,916
20197,080