scispace - formally typeset
Search or ask a question
Institution

Beihang University

EducationBeijing, China
About: Beihang University is a education organization based out in Beijing, China. It is known for research contribution in the topics: Computer science & Control theory. The organization has 67002 authors who have published 73507 publications receiving 975691 citations. The organization is also known as: Beijing University of Aeronautics and Astronautics.


Papers
More filters
Journal ArticleDOI
27 Sep 2019-Science
TL;DR: The temperature-dependent interplay of three separate electronic bands in hole-doped tin sulfide (SnS) crystals leads to synergistic optimization between effective mass and carrier mobility and can be boosted through introducing selenium (Se), enhancing the power factor and lowering the thermal conductivity after Se alloying.
Abstract: Thermoelectric technology allows conversion between heat and electricity. Many good thermoelectric materials contain rare or toxic elements, so developing low-cost and high-performance thermoelectric materials is warranted. Here, we report the temperature-dependent interplay of three separate electronic bands in hole-doped tin sulfide (SnS) crystals. This behavior leads to synergistic optimization between effective mass (m*) and carrier mobility (μ) and can be boosted through introducing selenium (Se). This enhanced the power factor from ~30 to ~53 microwatts per centimeter per square kelvin (μW cm−1 K−2 at 300 K), while lowering the thermal conductivity after Se alloying. As a result, we obtained a maximum figure of merit ZT (ZTmax) of ~1.6 at 873 K and an average ZT (ZTave) of ~1.25 at 300 to 873 K in SnS0.91Se0.09 crystals. Our strategy for band manipulation offers a different route for optimizing thermoelectric performance. The high-performance SnS crystals represent an important step toward low-cost, Earth-abundant, and environmentally friendly thermoelectrics.

356 citations

Journal ArticleDOI
TL;DR: A versatile lithium reduction strategy to engineer the defects of oxides at room temperature leading to enhanced photocatalytic properties is developed and may be beneficial for many other related applications.
Abstract: Defects can greatly influence the properties of oxide materials; however, facile defect engineering of oxides at room temperature remains challenging. The generation of defects in oxides is difficult to control by conventional chemical reduction methods that usually require high temperatures and are time consuming. Here, we develop a facile room-temperature lithium reduction strategy to implant defects into a series of oxide nanoparticles including titanium dioxide (TiO2), zinc oxide (ZnO), tin dioxide (SnO2), and cerium dioxide (CeO2). Our lithium reduction strategy shows advantages including all-room-temperature processing, controllability, time efficiency, versatility and scalability. As a potential application, the photocatalytic hydrogen evolution performance of defective TiO2 is examined. The hydrogen evolution rate increases up to 41.8 mmol g−1 h−1 under one solar light irradiation, which is ~3 times higher than that of the pristine nanoparticles. The strategy of tuning defect oxides used in this work may be beneficial for many other related applications. Defective oxides are attractive for energy conversion and storage applications, but it remains challenging to implant defects in oxides under mild conditions. Here, the authors develop a versatile lithium reduction strategy to engineer the defects of oxides at room temperature leading to enhanced photocatalytic properties.

354 citations

Journal ArticleDOI
TL;DR: In this paper, the average consensus problem in directed networks of agents with both switching topology and time-delay is studied and the stability analysis is performed based on a proposed Lyapunov-Krasovskii function.
Abstract: This paper is devoted to the study of the average-consensus problem in directed networks of agents with both switching topology and time-delay. The stability analysis is performed based on a proposed Lyapunov–Krasovskii function. Sufficient conditions in terms of linear matrix inequalities (LMIs) are given to guarantee the average consensus under arbitrary switching of the network topology even if the time-delay is time-varying. Numerical simulations show the effectiveness of our theoretical results.

354 citations

Journal ArticleDOI
TL;DR: In this paper, the ozone removal rate of α-MnO2 nanofiber with high concentration of surface oxygen vacancy was obtained via vacuum deoxidation method, where the formation of oxygen vacancy enhanced the ratio of Mn3+/Mn4+, resulting in a significant improvement of the adsorption of ozone on the surface of the catalyst.
Abstract: α-MnO2 nanofiber with high concentration of surface oxygen vacancy was obtained via vacuum deoxidation method. The activity of α-MnO2 strongly depends on the concentration and extent of oxygen vacancy, which can be adjusted by tuning the temperature and time of vacuum deoxidation. The formation of oxygen vacancy enhanced the ratio of Mn3+/Mn4+, which changed the charge distribution on the α-MnO2 nanofiber, resulting in a significant improvement of the adsorption of ozone on the surface of the catalyst. In the dry gas flow, the ozone removal rate at 20 h has increased from 32.6% to 95%. In the wet gas flow, the ozone removal rate was also enhanced thanks to more active sites offered by α-MnO2. What's more, we found that the deactivation caused by water vapor was temporary and the activity would recover once the humidity has decreased. Finally, DFT calculation revealed that surface oxygen vacancy was the adsorption and reaction site for ozone decomposition and a new mechanism of ozone decomposition in the presence of H2O also was proposed. This work developed a deeper understanding to the process of ozone decomposition and would promote manganese oxide catalyst for practical application.

353 citations

Journal ArticleDOI
Weiqian Tian1, Qiuming Gao1, Yanli Tan1, Kai Yang1, Lihua Zhu1, Chunxiao Yang1, Hang Zhang1 
TL;DR: In this paper, a bio-inspired beehive-like hierarchical nanoporous carbon (BHNC) with a high specific surface area of 1472 m2 g−1 and a good electronic conductivity of 4.5 S cm−1 is synthesized by carbonizing the industrial waste of bamboo-based byproduct.
Abstract: Bio-inspired beehive-like hierarchical nanoporous carbon (BHNC) with a high specific surface area of 1472 m2 g−1 and a good electronic conductivity of 4.5 S cm−1 is synthesized by carbonizing the industrial waste of bamboo-based by-product. The BHNC sample exhibits remarkable electrochemical performances as a supercapacitor electrode material, such as a high specific capacitance of 301 F g−1 at 0.1 A g−1, still maintaining a value of 192 F g−1 at 100 A g−1, negligible capacitance loss after 20 000 cycles at 1 A g−1, and a high power density of 26 000 W kg−1 at an energy density of 6.1 W h kg−1 based on active electrode materials in an aqueous electrolyte system. Moreover, an enhanced power density of 42 000 W kg−1 at a high energy density of 43.3 W h kg−1 is obtained in an ionic liquid electrolyte system, which places the BHNC-based supercapacitors in the Ragone chart among the best energy–power synergetic outputting properties ever reported for carbon-based supercapacitors.

351 citations


Authors

Showing all 67500 results

NameH-indexPapersCitations
Yi Chen2174342293080
H. S. Chen1792401178529
Alan J. Heeger171913147492
Lei Jiang1702244135205
Wei Li1581855124748
Shu-Hong Yu14479970853
Jian Zhou128300791402
Chao Zhang127311984711
Igor Katkov12597271845
Tao Zhang123277283866
Nicholas A. Kotov12357455210
Shi Xue Dou122202874031
Li Yuan12194867074
Robert O. Ritchie12065954692
Haiyan Wang119167486091
Network Information
Related Institutions (5)
Harbin Institute of Technology
109.2K papers, 1.6M citations

96% related

Tsinghua University
200.5K papers, 4.5M citations

92% related

University of Science and Technology of China
101K papers, 2.4M citations

92% related

Nanyang Technological University
112.8K papers, 3.2M citations

92% related

City University of Hong Kong
60.1K papers, 1.7M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023205
20221,178
20216,768
20206,916
20197,080