scispace - formally typeset
Search or ask a question
Institution

Beihang University

EducationBeijing, China
About: Beihang University is a education organization based out in Beijing, China. It is known for research contribution in the topics: Control theory & Microstructure. The organization has 67002 authors who have published 73507 publications receiving 975691 citations. The organization is also known as: Beijing University of Aeronautics and Astronautics.


Papers
More filters
Book ChapterDOI
08 Oct 2016
TL;DR: Li et al. as mentioned in this paper explored the high-performance detection and deep learning based appearance feature, and showed that they lead to significantly better MOT results in both online and offline setting.
Abstract: Detection and learning based appearance feature play the central role in data association based multiple object tracking (MOT), but most recent MOT works usually ignore them and only focus on the hand-crafted feature and association algorithms. In this paper, we explore the high-performance detection and deep learning based appearance feature, and show that they lead to significantly better MOT results in both online and offline setting. We make our detection and appearance feature publicly available (https://drive.google.com/open?id=0B5ACiy41McAHMjczS2p0dFg3emM). In the following part, we first summarize the detection and appearance feature, and then introduce our tracker named Person of Interest (POI), which has both online and offline version (We use POI to denote our online tracker and KDNT to denote our offline tracker in submission.).

299 citations

Journal ArticleDOI
TL;DR: Analysis of data collected from two live streaming platforms in mainland China indicates that audiences identification with broadcasters and audience groups are positively associated with their continuous watching intention, and broadcasting identification and group identification increase continuance intention.

298 citations

Journal ArticleDOI
TL;DR: A review of the progress in the field of exotic $XYZ$ hadrons can be found in this article, with a summary on future prospects and challenges, as well as a survey of the current state-of-the-art.
Abstract: The quark model was formulated in 1964 to classify mesons as bound states made of a quark-antiquark pair, and baryons as bound states made of three quarks. For a long time all known mesons and baryons could be classified within this scheme. Quantum Chromodynamics (QCD), however, in principle also allows the existence of more complex structures, generically called exotic hadrons or simply exotics. These include four-quark hadrons (tetraquarks and hadronic molecules), five-quark hadrons (pentaquarks) and states with active gluonic degrees of freedom (hybrids), and even states of pure glue (glueballs). Exotic hadrons have been systematically searched for in numerous experiments for many years. Remarkably, in the past fifteen years, many new hadrons that do not exhibit the expected properties of ordinary (not exotic) hadrons have been discovered in the quarkonium spectrum. These hadrons are collectively known as $XYZ$ states. Some of them, like the charged states, are undoubtedly exotic. Parallel to the experimental progress, the last decades have also witnessed an enormous theoretical effort to reach a theoretical understanding of the $XYZ$ states. Theoretical approaches include not only phenomenological extensions of the quark model to exotics, but also modern non-relativistic effective field theories and lattice QCD calculations. The present work aims at reviewing the rapid progress in the field of exotic $XYZ$ hadrons over the past few years both in experiments and theory. It concludes with a summary on future prospects and challenges.

298 citations

Journal ArticleDOI
TL;DR: In this article, the effects of processing techniques on the microstructure and hysteresis of permanent magnets are largely understood, and new methods of increasing magnet stability at elevated temperature are developed, and integrated multifunctionality of hard magnets with other useful properties is now envisaged.

298 citations

Journal ArticleDOI
01 Jul 2018
TL;DR: In this article, a series of nanowires was fabricated in which layer-by-layer self-organization of insulating organic cations and conductive inorganic frameworks, along the nanowire length, creates high resistance in the interior of the crystals and high conductivity at the edges of the crystal.
Abstract: Metal-halide perovskites have long carrier diffusion lengths, low trap densities and high carrier mobilities, and are therefore of value in the development of photovoltaics and light-emitting diodes. However, the presence of thermally activated carriers in the materials leads to high noise levels, which limits their photodetection capabilities. Here, we show that ultrasensitive photodetectors can be created from single-crystalline nanowire arrays of layered metal-halide perovskites. A series of nanowires was fabricated in which layer-by-layer self-organization of insulating organic cations and conductive inorganic frameworks, along the nanowire length, creates high resistance in the interior of the crystals and high conductivity at the edges of the crystals. Using these structures, high-performance photodetection was achieved with responsivities exceeding 1.5 × 104 A W−1 and detectivities exceeding 7 × 1015 jones. Our state-of-the-art device performance originates from a combination of efficient free-carrier edge conduction and resistive hopping barriers in the layered perovskites. Photodetectors made from single-crystalline nanowire arrays of layered metal-halide perovskites exhibit detectivities of more than 7 × 1015 jones, due to a nanowire structure that combines high resistance in the interior of the crystals and high conductivity at the edges of the crystals.

297 citations


Authors

Showing all 67500 results

NameH-indexPapersCitations
Yi Chen2174342293080
H. S. Chen1792401178529
Alan J. Heeger171913147492
Lei Jiang1702244135205
Wei Li1581855124748
Shu-Hong Yu14479970853
Jian Zhou128300791402
Chao Zhang127311984711
Igor Katkov12597271845
Tao Zhang123277283866
Nicholas A. Kotov12357455210
Shi Xue Dou122202874031
Li Yuan12194867074
Robert O. Ritchie12065954692
Haiyan Wang119167486091
Network Information
Related Institutions (5)
Harbin Institute of Technology
109.2K papers, 1.6M citations

96% related

Tsinghua University
200.5K papers, 4.5M citations

92% related

University of Science and Technology of China
101K papers, 2.4M citations

92% related

Nanyang Technological University
112.8K papers, 3.2M citations

92% related

City University of Hong Kong
60.1K papers, 1.7M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023205
20221,178
20216,767
20206,916
20197,080