scispace - formally typeset
Search or ask a question
Institution

Beihang University

EducationBeijing, China
About: Beihang University is a education organization based out in Beijing, China. It is known for research contribution in the topics: Control theory & Microstructure. The organization has 67002 authors who have published 73507 publications receiving 975691 citations. The organization is also known as: Beijing University of Aeronautics and Astronautics.


Papers
More filters
Journal ArticleDOI
TL;DR: This study offers an alternative promising way to create 2D intrinsic ferromagnets from their antiferromagnetic bulk counterparts and also renders 2D CrOX monolayers great platform for future spintronics.
Abstract: Intrinsically ferromagnetic 2D semiconductors are essential and highly sought for nanoscale spintronics, but they can only be obtained from ferromagnetic bulk crystals, while the possibility to create 2D intrinsic ferromagnets from bulk antiferromagnets remains unknown. Herein on the basis of ab initio calculations, we demonstrate this feasibility with the discovery of intrinsic ferromagnetism in an emerging class of single-layer 2D semiconductors CrOX (CrOCl and CrOBr monolayers), which show robust ferromagnetic ordering, large spin polarization, and high Curie temperature. These 2D crystals promise great dynamical and thermal stabilities as well as easy experimental fabrication from their bulk antiferromagnets. The Curie temperature of 2D CrOCl is 160 K, which exceeds the record (155 K) of the most-studied dilute magnetic GaMnAs materials, and could be further enhanced by appropriate strains. Our study offers an alternative promising way to create 2D intrinsic ferromagnets from their antiferromagnetic b...

290 citations

Journal ArticleDOI
Albert M. Sirunyan, Armen Tumasyan, Wolfgang Adam1, Federico Ambrogi1  +2294 moreInstitutions (194)
TL;DR: In this paper, the Higgs boson mass was measured in the H → ZZ → 4l (l = e, μ) decay channel and the signal strength modifiers for individual Higgs production modes were also measured.
Abstract: Properties of the Higgs boson are measured in the H → ZZ → 4l (l = e, μ) decay channel. A data sample of proton-proton collisions at $ \sqrt{s}=13 $ TeV, collected with the CMS detector at the LHC and corresponding to an integrated luminosity of 35.9 fb$^{−1}$ is used. The signal strength modifier μ, defined as the ratio of the observed Higgs boson rate in the H → ZZ → 4l decay channel to the standard model expectation, is measured to be μ = 1.05$_{− 0.17}^{+ 0.19}$ at m$_{H}$ = 125.09 GeV, the combined ATLAS and CMS measurement of the Higgs boson mass. The signal strength modifiers for the individual Higgs boson production modes are also measured. The cross section in the fiducial phase space defined by the requirements on lepton kinematics and event topology is measured to be 2. 92$_{− 0.44}^{+ 0.48}$ (stat)$_{− 0.24}^{+ 0.28}$ (syst)fb, which is compatible with the standard model prediction of 2.76 ± 0.14 fb. Differential cross sections are reported as a function of the transverse momentum of the Higgs boson, the number of associated jets, and the transverse momentum of the leading associated jet. The Higgs boson mass is measured to be m$_{H}$ = 125.26 ± 0.21 GeV and the width is constrained using the on-shell invariant mass distribution to be Γ$_{H}$ < 1.10 GeV, at 95% confidence level.

290 citations

Journal ArticleDOI
TL;DR: It is confirmed that the use of direct link overcomes zero diversity order of far NOMA user inherent to FD relaying and new closed-form expressions for asymptotic ergodic rates are derived.
Abstract: In this paper, a novel cooperative non-orthogonal multiple access (NOMA) system is proposed, where one near user is employed as decode-and-forward relaying switching between full-duplex (FD) and half-duplex (HD) mode to help a far user. Two representative cooperative relaying scenarios are investigated insightfully. The first scenario is that no direct link exists between the base station (BS) and far user. The second scenario is that the direct link exists between the BS and far user. To characterize the performance of potential gains brought by the FD NOMA in two considered scenarios, three performance metrics outage probability, ergodic rate, and energy efficiency are discussed. More particularly, we derive new closed-form expressions for both exact and asymptotic outage probabilities as well as delay-limited throughput for two NOMA users. Based on the derived results, the diversity orders achieved by users are obtained. We confirm that the use of direct link overcomes zero diversity order of far NOMA user inherent to FD relaying. In addition, we derive new closed-form expressions for asymptotic ergodic rates. Based on these, the high signal-to-noise ratio (SNR) slopes of two users for FD NOMA are obtained. Simulation results demonstrate that: 1) the FD NOMA is superior to the HD NOMA in terms of outage probability and ergodic sum rate in the low SNR region; and 2) in delay-limited transmission mode, the FD NOMA has higher energy efficiency than the HD NOMA in the low SNR region; However, in delay-tolerant transmission mode, the system energy efficiency of the HD NOMA exceeds the FD NOMA in the high SNR region.

289 citations

Journal ArticleDOI
TL;DR: In this article, the second-order and third-order azimuthal anisotropy harmonics of unidentified charged particles, as well as v2v2 of View the MathML sourceKS0 and ViewTheMathML sourceΛ/Λ ǫ particles, are extracted from long-range two-particle correlations as functions of particle multiplicity and transverse momentum.

288 citations

Journal ArticleDOI
TL;DR: It is shown that through tuning the Rashba spin-orbit coupling, a topological phase transition results in a valley-polarized quantum anomalous Hall state, i.e., a quantum state that exhibits the electronic properties of both the quantum valley Hall state (valley Chern number Cv=3) and quantum anomalies Hall state with C=-1.
Abstract: We find theoretically a new quantum state of matter---the valley-polarized quantum anomalous Hall state in silicene. In the presence of Rashba spin-orbit coupling and an exchange field, silicene hosts a quantum anomalous Hall state with Chern number $\mathcal{C}=2$. We show that through tuning the Rashba spin-orbit coupling, a topological phase transition results in a valley-polarized quantum anomalous Hall state, i.e., a quantum state that exhibits the electronic properties of both the quantum valley Hall state (valley Chern number ${\mathcal{C}}_{v}=3$) and quantum anomalous Hall state with $\mathcal{C}=\ensuremath{-}1$. This finding provides a platform for designing dissipationless valleytronics in a more robust manner.

288 citations


Authors

Showing all 67500 results

NameH-indexPapersCitations
Yi Chen2174342293080
H. S. Chen1792401178529
Alan J. Heeger171913147492
Lei Jiang1702244135205
Wei Li1581855124748
Shu-Hong Yu14479970853
Jian Zhou128300791402
Chao Zhang127311984711
Igor Katkov12597271845
Tao Zhang123277283866
Nicholas A. Kotov12357455210
Shi Xue Dou122202874031
Li Yuan12194867074
Robert O. Ritchie12065954692
Haiyan Wang119167486091
Network Information
Related Institutions (5)
Harbin Institute of Technology
109.2K papers, 1.6M citations

96% related

Tsinghua University
200.5K papers, 4.5M citations

92% related

University of Science and Technology of China
101K papers, 2.4M citations

92% related

Nanyang Technological University
112.8K papers, 3.2M citations

92% related

City University of Hong Kong
60.1K papers, 1.7M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023205
20221,178
20216,767
20206,916
20197,080