scispace - formally typeset
Search or ask a question
Institution

Beihang University

EducationBeijing, China
About: Beihang University is a education organization based out in Beijing, China. It is known for research contribution in the topics: Computer science & Control theory. The organization has 67002 authors who have published 73507 publications receiving 975691 citations. The organization is also known as: Beijing University of Aeronautics and Astronautics.


Papers
More filters
Journal ArticleDOI
TL;DR: An adaptive backstepping controller is proposed for precise tracking control of hydraulic systems to handle parametric uncertainties along with nonlinear friction compensation, and the robustness against unconsidered dynamics, as well as external disturbances is also ensured via Lyapunov analysis.
Abstract: This paper concerns high-accuracy tracking control for hydraulic actuators with nonlinear friction compensation Typically, LuGre model-based friction compensation has been widely employed in sundry industrial servomechanisms However, due to the piecewise continuous property, it is difficult to be integrated with backstepping design, which needs the time derivation of the employed friction model Hence, nonlinear model-based hydraulic control rarely sets foot in friction compensation with nondifferentiable friction models, such as LuGre model, Stribeck effects, although they can give excellent friction description and prediction In this paper, a novel continuously differentiable nonlinear friction model is first derived by modifying the traditional piecewise continuous LuGre model, then an adaptive backstepping controller is proposed for precise tracking control of hydraulic systems to handle parametric uncertainties along with nonlinear friction compensation In the formulated nonlinear hydraulic system model, friction parameters, servovalve null shift, and orifice-type internal leakage are all uniformly considered in the proposed controller The controller theoretically guarantees asymptotic tracking performance in the presence of parametric uncertainties, and the robustness against unconsidered dynamics, as well as external disturbances, is also ensured via Lyapunov analysis The effectiveness of the proposed controller is demonstrated via comparative experimental results

255 citations

Journal ArticleDOI
TL;DR: enhanced thermoelectric performance in SnTe, where significantly improved electrical transport properties and reduced thermal conductivity were achieved simultaneously are reported, suggesting that SnTe is a robust candidate for medium-temperature thermoelectedric applications.
Abstract: We report enhanced thermoelectric performance in SnTe, where significantly improved electrical transport properties and reduced thermal conductivity were achieved simultaneously. The former was obtained from a larger hole Seebeck coefficient through Fermi level tuning by optimizing the carrier concentration with Ga, In, Bi, and Sb dopants, resulting in a power factor of 21 μW cm(-1) K(-2) and ZT of 0.9 at 823 K in Sn(0.97)Bi(0.03)Te. To reduce the lattice thermal conductivity without deteriorating the hole carrier mobility in Sn(0.97)Bi(0.03)Te, SrTe was chosen as the second phase to create strained endotaxial nanostructures as phonon scattering centers. As a result, the lattice thermal conductivity decreases strongly from ∼2.0 Wm(-1) K(-1) for Sn(0.97)Bi(0.03)Te to ∼1.2 Wm(-1) K(-1) as the SrTe content is increased from 0 to 5.0% at room temperature and from ∼1.1 to ∼0.70 Wm(-1) K(-1) at 823 K. For the Sn(0.97)Bi(0.03)Te-3% SrTe sample, this leads to a ZT of 1.2 at 823 K and a high average ZT (for SnTe) of 0.7 in the temperature range of 300-823 K, suggesting that SnTe is a robust candidate for medium-temperature thermoelectric applications.

255 citations

Journal ArticleDOI
M. Ablikim, M. N. Achasov1, M. N. Achasov2, O. Albayrak3  +376 moreInstitutions (50)
TL;DR: In this paper, a study of the process e(+)e(-) -> pi(+/-) (D (D) over bar*)(-/+) at root s = 4.26 GeV using a 525 pb(-1) data sample collected with the BESIII detector at the BEPCII storage ring.
Abstract: We report on a study of the process e(+)e(-) -> pi(+/-) (D (D) over bar*)(-/+) at root s = 4.26 GeV using a 525 pb(-1) data sample collected with the BESIII detector at the BEPCII storage ring. A distinct charged structure is observed in the (D (D) over bar*)(-/+) invariant mass distribution. When fitted to a mass- dependent- width Breit- Wigner line shape, the pole mass and width are determined to be M-pole (3883: 9 +/- 1.5 (stat) +/- 4.2 dsyst__ MeV= c(2) and Gamma(pole) = (24: 8 +/- 3.3 (stat) +/- 11: 0 (syst)) MeV. The mass and width of the structure, which we refer to as Z(c)(3885), are 2 sigma and 1 sigma, respectively, below those of the Z(c)(3900) -> pi(+/-) J/psi peak observed by BESIII and Belle in pi(+)pi(-) J/psi final states produced at the same center- of- mass energy. The angular distribution of the pi Z(c)(3885) system favors a J(P) = J(P) = 1(+) quantum number assignment for the structure and disfavors 1(-) or 0(-). The Born cross section times the (D (D) over bar*) branching fraction of the Z(c)(3885) is measured to be sigma(e(+)e(-) -> pi(+/-)Z(c)(3885)(-/+)) x B(Z(c)(3885)-/+ -> (D (D) over bar*)(-/+) = (83.5 +/- 6.6 (stat) +/- 22.0 (syst)) pb. Assuming the Z(c)(3885) -> (D (D) over bar*)(-/+) signal reported here and the Z(c)(3900) -> pi J/psi signal are from the same source, the partial width ratio (Gamma(Z(c)(3885) -> D (D) over bar*)/Gamma(Z(c)(3900) -> pi J/psi)) = 6.2 +/- 1.1 (stat) +/- 2.7 (syst) is determined.

254 citations

Journal ArticleDOI
TL;DR: A novel small molecule acceptor MeIC with a methylated end-capping group is developed, which exhibits a higher lowest unoccupied molecular orbital (LUMO) level value, tighter molecular packing, better crystallites quality, and stronger absorption in the range of 520-740 nm.
Abstract: A novel small molecule acceptor MeIC with a methylated end-capping group is developed. Compared to unmethylated counterparts (ITCPTC), MeIC exhibits a higher lowest unoccupied molecular orbital (LUMO) level value, tighter molecular packing, better crystallites quality, and stronger absorption in the range of 520-740 nm. The MeIC-based polymer solar cells (PSCs) with J71 as donor, achieve high power conversion efficiency (PCE), up to 12.54% with a short-circuit current (JSC ) of 18.41 mA cm-2 , significantly higher than that of the device based on J71:ITCPTC (11.63% with a JSC of 17.52 mA cm-2 ). The higher JSC of the PSC based on J71:MeIC can be attributed to more balanced μh /μe , higher charge dissociation and charge collection efficiency, better molecular packing, and more proper phase separation features as indicated by grazing incident X-ray diffraction and resonant soft X-ray scattering results. It is worth mentioning that the as-cast PSCs based on MeIC also yield a high PCE of 11.26%, which is among the highest value for the as-cast nonfullerene PSCs so far. Such a small modification that leads to so significant an improvement of the photovoltaic performance is a quite exciting finding, shining a light on the molecular design of the nonfullerene acceptors.

254 citations

Journal ArticleDOI
TL;DR: In this paper, a BMP test was used to evaluate biogas production for raw biomass and hydrothermal treated waste, which showed that fruit/vegetable and food waste showed higher methane production than that of cow manure, pig manure, and municipal sewage sludge.

254 citations


Authors

Showing all 67500 results

NameH-indexPapersCitations
Yi Chen2174342293080
H. S. Chen1792401178529
Alan J. Heeger171913147492
Lei Jiang1702244135205
Wei Li1581855124748
Shu-Hong Yu14479970853
Jian Zhou128300791402
Chao Zhang127311984711
Igor Katkov12597271845
Tao Zhang123277283866
Nicholas A. Kotov12357455210
Shi Xue Dou122202874031
Li Yuan12194867074
Robert O. Ritchie12065954692
Haiyan Wang119167486091
Network Information
Related Institutions (5)
Harbin Institute of Technology
109.2K papers, 1.6M citations

96% related

Tsinghua University
200.5K papers, 4.5M citations

92% related

University of Science and Technology of China
101K papers, 2.4M citations

92% related

Nanyang Technological University
112.8K papers, 3.2M citations

92% related

City University of Hong Kong
60.1K papers, 1.7M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023205
20221,178
20216,768
20206,916
20197,080