scispace - formally typeset
Search or ask a question
Institution

Beijing Institute of Genomics

FacilityBeijing, China
About: Beijing Institute of Genomics is a facility organization based out in Beijing, China. It is known for research contribution in the topics: Population & Genome. The organization has 2071 authors who have published 1961 publications receiving 111734 citations. The organization is also known as: Beijing Institute of Genomics, Chinese Academy of Sciences and Genetics Society of China.


Papers
More filters
Journal ArticleDOI
Adam Auton1, Gonçalo R. Abecasis2, David Altshuler3, Richard Durbin4  +514 moreInstitutions (90)
01 Oct 2015-Nature
TL;DR: The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations, and has reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-generation sequencing, deep exome sequencing, and dense microarray genotyping.
Abstract: The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies.

12,661 citations

Journal ArticleDOI
TL;DR: It is demonstrated that miRNAs are present in the serum and plasma of humans and other animals such as mice, rats, bovine fetuses, calves, and horses, and can serve as potential biomarkers for the detection of various cancers and other diseases.
Abstract: Dysregulated expression of microRNAs (miRNAs) in various tissues has been associated with a variety of diseases, including cancers. Here we demonstrate that miRNAs are present in the serum and plasma of humans and other animals such as mice, rats, bovine fetuses, calves, and horses. The levels of miRNAs in serum are stable, reproducible, and consistent among individuals of the same species. Employing Solexa, we sequenced all serum miRNAs of healthy Chinese subjects and found over 100 and 91 serum miRNAs in male and female subjects, respectively. We also identified specific expression patterns of serum miRNAs for lung cancer, colorectal cancer, and diabetes, providing evidence that serum miRNAs contain fingerprints for various diseases. Two non-small cell lung cancer-specific serum miRNAs obtained by Solexa were further validated in an independent trial of 75 healthy donors and 152 cancer patients, using quantitative reverse transcription polymerase chain reaction assays. Through these analyses, we conclude that serum miRNAs can serve as potential biomarkers for the detection of various cancers and other diseases.

4,184 citations

Journal ArticleDOI
07 Sep 2012-Science
TL;DR: P pervasive involvement of regulatory DNA variation in common human disease and provide pathogenic insights into diverse disorders are suggested.
Abstract: Genome-wide association studies have identified many noncoding variants associated with common diseases and traits. We show that these variants are concentrated in regulatory DNA marked by deoxyribonuclease I (DNase I) hypersensitive sites (DHSs). Eighty-eight percent of such DHSs are active during fetal development and are enriched in variants associated with gestational exposure–related phenotypes. We identified distant gene targets for hundreds of variant-containing DHSs that may explain phenotype associations. Disease-associated variants systematically perturb transcription factor recognition sequences, frequently alter allelic chromatin states, and form regulatory networks. We also demonstrated tissue-selective enrichment of more weakly disease-associated variants within DHSs and the de novo identification of pathogenic cell types for Crohn’s disease, multiple sclerosis, and an electrocardiogram trait, without prior knowledge of physiological mechanisms. Our results suggest pervasive involvement of regulatory DNA variation in common human disease and provide pathogenic insights into diverse disorders.

3,177 citations

Journal ArticleDOI
Shusei Sato, Satoshi Tabata, Hideki Hirakawa, Erika Asamizu  +320 moreInstitutions (51)
31 May 2012-Nature
TL;DR: A high-quality genome sequence of domesticated tomato is presented, a draft sequence of its closest wild relative, Solanum pimpinellifolium, is compared, and the two tomato genomes are compared to each other and to the potato genome.
Abstract: Tomato (Solanum lycopersicum) is a major crop plant and a model system for fruit development. Solanum is one of the largest angiosperm genera1 and includes annual and perennial plants from diverse habitats. Here we present a high-quality genome sequence of domesticated tomato, a draft sequence of its closest wild relative, Solanum pimpinellifolium2, and compare them to each other and to the potato genome (Solanum tuberosum). The two tomato genomes show only 0.6% nucleotide divergence and signs of recent admixture, but show more than 8% divergence from potato, with nine large and several smaller inversions. In contrast to Arabidopsis, but similar to soybean, tomato and potato small RNAs map predominantly to gene-rich chromosomal regions, including gene promoters. The Solanum lineage has experienced two consecutive genome triplications: one that is ancient and shared with rosids, and a more recent one. These triplications set the stage for the neofunctionalization of genes controlling fruit characteristics, such as colour and fleshiness.

2,687 citations

Journal ArticleDOI
TL;DR: FTO exhibits efficient oxidative demethylation activity of abundant N6-methyladenosine (m6A) residues in RNA in vitro, and it is shown that FTO partially colocalizes with nuclear speckles, supporting m6A in nuclear RNA as a physiological substrate of FTO.
Abstract: We report here that fat mass and obesity-associated protein (FTO) has efficient oxidative demethylation activity targeting the abundant N6-methyladenosine (m(6)A) residues in RNA in vitro. FTO knockdown with siRNA led to increased amounts of m(6)A in mRNA, whereas overexpression of FTO resulted in decreased amounts of m(6)A in human cells. We further show the partial colocalization of FTO with nuclear speckles, which supports the notion that m(6)A in nuclear RNA is a major physiological substrate of FTO.

2,647 citations


Authors

Showing all 2093 results

NameH-indexPapersCitations
Jing Wang1844046202769
Jun Wang1661093141621
Yang Yang1642704144071
Rui Zhang1512625107917
Jian Li133286387131
Wei Chen122194689460
Jun Yu121117481186
Huanming Yang115634123818
Qian Wang108214865557
Jian Zhang107306469715
Hao Wu10566942607
Lin Li104202761709
Yingrui Li10018276181
Ziheng Yang9824971599
Xun Xu9746557621
Network Information
Related Institutions (5)
Wellcome Trust Sanger Institute
9.6K papers, 1.2M citations

89% related

European Bioinformatics Institute
10.5K papers, 999.6K citations

87% related

Laboratory of Molecular Biology
24.2K papers, 2.1M citations

86% related

Broad Institute
11.6K papers, 1.5M citations

86% related

Peking Union Medical College
61.8K papers, 1.1M citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20238
202247
2021178
2020155
2019165
2018137