Institution
Beijing University of Posts and Telecommunications
Education•Beijing, Beijing, China•
About: Beijing University of Posts and Telecommunications is a(n) education organization based out in Beijing, Beijing, China. It is known for research contribution in the topic(s): MIMO & Quality of service. The organization has 39576 authors who have published 41525 publication(s) receiving 403759 citation(s). The organization is also known as: BUPT.
Papers published on a yearly basis
Papers
More filters
Posted Content•
TL;DR: This paper proposed two novel model architectures for computing continuous vector representations of words from very large data sets, and the quality of these representations is measured in a word similarity task and the results are compared to the previously best performing techniques based on different types of neural networks.
Abstract: We propose two novel model architectures for computing continuous vector representations of words from very large data sets. The quality of these representations is measured in a word similarity task, and the results are compared to the previously best performing techniques based on different types of neural networks. We observe large improvements in accuracy at much lower computational cost, i.e. it takes less than a day to learn high quality word vectors from a 1.6 billion words data set. Furthermore, we show that these vectors provide state-of-the-art performance on our test set for measuring syntactic and semantic word similarities.
20,046 citations
Proceedings Article•
16 Jan 2013TL;DR: Two novel model architectures for computing continuous vector representations of words from very large data sets are proposed and it is shown that these vectors provide state-of-the-art performance on the authors' test set for measuring syntactic and semantic word similarities.
Abstract: We propose two novel model architectures for computing continuous vector
representations of words from very large data sets. The quality of these
representations is measured in a word similarity task, and the results are
compared to the previously best performing techniques based on different types
of neural networks. We observe large improvements in accuracy at much lower
computational cost, i.e. it takes less than a day to learn high quality word
vectors from a 1.6 billion words data set. Furthermore, we show that these
vectors provide state-of-the-art performance on our test set for measuring
syntactic and semantic word similarities.
4,882 citations
01 Jul 2017
TL;DR: Residual Attention Network as mentioned in this paper is a convolutional neural network using attention mechanism which can incorporate with state-of-the-art feed forward network architecture in an end-to-end training fashion.
Abstract: In this work, we propose Residual Attention Network, a convolutional neural network using attention mechanism which can incorporate with state-of-art feed forward network architecture in an end-to-end training fashion. Our Residual Attention Network is built by stacking Attention Modules which generate attention-aware features. The attention-aware features from different modules change adaptively as layers going deeper. Inside each Attention Module, bottom-up top-down feedforward structure is used to unfold the feedforward and feedback attention process into a single feedforward process. Importantly, we propose attention residual learning to train very deep Residual Attention Networks which can be easily scaled up to hundreds of layers. Extensive analyses are conducted on CIFAR-10 and CIFAR-100 datasets to verify the effectiveness of every module mentioned above. Our Residual Attention Network achieves state-of-the-art object recognition performance on three benchmark datasets including CIFAR-10 (3.90% error), CIFAR-100 (20.45% error) and ImageNet (4.8% single model and single crop, top-5 error). Note that, our method achieves 0.6% top-1 accuracy improvement with 46% trunk depth and 69% forward FLOPs comparing to ResNet-200. The experiment also demonstrates that our network is robust against noisy labels.
1,399 citations
Posted Content•
TL;DR: Residual Attention Network as discussed by the authors is a convolutional neural network using attention mechanism which can incorporate with state-of-the-art feed forward network architecture in an end-to-end training fashion.
Abstract: In this work, we propose "Residual Attention Network", a convolutional neural network using attention mechanism which can incorporate with state-of-art feed forward network architecture in an end-to-end training fashion. Our Residual Attention Network is built by stacking Attention Modules which generate attention-aware features. The attention-aware features from different modules change adaptively as layers going deeper. Inside each Attention Module, bottom-up top-down feedforward structure is used to unfold the feedforward and feedback attention process into a single feedforward process. Importantly, we propose attention residual learning to train very deep Residual Attention Networks which can be easily scaled up to hundreds of layers. Extensive analyses are conducted on CIFAR-10 and CIFAR-100 datasets to verify the effectiveness of every module mentioned above. Our Residual Attention Network achieves state-of-the-art object recognition performance on three benchmark datasets including CIFAR-10 (3.90% error), CIFAR-100 (20.45% error) and ImageNet (4.8% single model and single crop, top-5 error). Note that, our method achieves 0.6% top-1 accuracy improvement with 46% trunk depth and 69% forward FLOPs comparing to ResNet-200. The experiment also demonstrates that our network is robust against noisy labels.
1,360 citations
Posted Content•
TL;DR: A detailed review over existing graph neural network models is provided, systematically categorize the applications, and four open problems for future research are proposed.
Abstract: Lots of learning tasks require dealing with graph data which contains rich relation information among elements. Modeling physics systems, learning molecular fingerprints, predicting protein interface, and classifying diseases demand a model to learn from graph inputs. In other domains such as learning from non-structural data like texts and images, reasoning on extracted structures (like the dependency trees of sentences and the scene graphs of images) is an important research topic which also needs graph reasoning models. Graph neural networks (GNNs) are neural models that capture the dependence of graphs via message passing between the nodes of graphs. In recent years, variants of GNNs such as graph convolutional network (GCN), graph attention network (GAT), graph recurrent network (GRN) have demonstrated ground-breaking performances on many deep learning tasks. In this survey, we propose a general design pipeline for GNN models and discuss the variants of each component, systematically categorize the applications, and propose four open problems for future research.
1,087 citations
Authors
Showing all 39576 results
Name | H-index | Papers | Citations |
---|---|---|---|
Jie Zhang | 178 | 4857 | 221720 |
Jian Li | 133 | 2863 | 87131 |
Ming Li | 103 | 1669 | 62672 |
Kang G. Shin | 98 | 885 | 38572 |
Lei Liu | 98 | 2041 | 51163 |
Muhammad Shoaib | 97 | 1333 | 47617 |
Stan Z. Li | 97 | 532 | 41793 |
Qi Tian | 96 | 1030 | 41010 |
Xiaodong Xu | 94 | 1122 | 50817 |
Qi-Kun Xue | 84 | 589 | 30908 |
Long Wang | 84 | 835 | 30926 |
Jing Zhou | 84 | 533 | 37101 |
Hao Yu | 81 | 981 | 27765 |
Mohsen Guizani | 79 | 1110 | 31282 |
Muhammad Iqbal | 77 | 961 | 23821 |