scispace - formally typeset
Search or ask a question
Institution

Beijing University of Posts and Telecommunications

EducationBeijing, Beijing, China
About: Beijing University of Posts and Telecommunications is a education organization based out in Beijing, Beijing, China. It is known for research contribution in the topics: MIMO & Quality of service. The organization has 39576 authors who have published 41525 publications receiving 403759 citations. The organization is also known as: BUPT.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present a series of physical layer techniques that are necessary to produce reliable and practical molecular communications, equipped with the appropriate channel knowledge, the design of appropriate modulation and error correction coding schemes, and transmitter and receiver side signal processing methods that suppress inter-symbol interference.
Abstract: This article examines recent research in molecular communications from a telecommunications system design perspective. In particular, it focuses on channel models and state-of-the-art physical layer techniques. The goal is to provide a foundation for higher layer research and motivation for research and development of functional prototypes. In the first part of the article, we focus on the channel and noise model, comparing molecular and radio-wave pathloss formulae. In the second part, the article examines, equipped with the appropriate channel knowledge, the design of appropriate modulation and error correction coding schemes. The third reviews transmitter and receiver side signal processing methods that suppress inter-symbol interference. Taken together, the three parts present a series of physical layer techniques that are necessary to produce reliable and practical molecular communications.

109 citations

Journal ArticleDOI
TL;DR: A joint user association and power control optimization algorithm is developed to determine the traffic load in energy-cooperation enabled NOMA HetNets, which achieves much higher energy efficiency performance than existing schemes.
Abstract: This paper focuses on resource allocation in energy-cooperation enabled two-tier heterogeneous networks (HetNets) with non-orthogonal multiple access (NOMA), where base stations (BSs) are powered by both renewable energy sources and the conventional grid. Each BS can serve multiple users at the same time and frequency band. To deal with the fluctuation of renewable energy harvesting, we consider that renewable energy can be shared between BSs via the smart grid. In such networks, user association and power control need to be re-designed, since existing approaches are based on OMA. Therefore, we formulate a problem to find the optimum user association and power control schemes for maximizing the energy efficiency of the overall network, under quality-of-service constraints. To deal with this problem, we first propose a distributed algorithm to provide the optimal user association solution for the fixed transmit power. Furthermore, a joint user association and power control optimization algorithm is developed to determine the traffic load in energy-cooperation enabled NOMA HetNets, which achieves much higher energy efficiency performance than existing schemes. Our simulation results demonstrate the effectiveness of the proposed algorithm, and show that NOMA can achieve higher energy efficiency performance than OMA in the considered networks.

109 citations

Journal ArticleDOI
TL;DR: Experimental results on two fine-grained vehicle datasets demonstrate that the CMP modified CNNs can improve the classification accuracies on the task of fine- grained vehicle classification while a massive amount of parameters are reduced.
Abstract: Convolutional neural networks (CNNs) have recently shown excellent performance on the task of fine-grained vehicle classification, where the motivation is to identify the fine-grained categories of the given vehicles. Generally speaking, the main motivation of the conventional back-propagation algorithm is to optimize the loss function. The algorithm itself does not guarantee if the extracted features are discriminative for the task of classification. Intuitively, if we can learn more discriminative features with a relatively small number of feature maps, the generalization ability of the CNNs will be significantly improved. Therefore, we propose a channel max pooling (CMP) scheme, where a new layer is inserted between the fully connected layers and the convolutional layers. The proposed CMP scheme divides the feature maps into to several sub-groups. Then, it compresses the feature maps within each sub-group into a new one. The compression is carried out by selecting the maximum value among the same locations from different feature maps. Moreover, the proposed CMP layer has the advantage that it can reduce the number of parameters via reducing the number of channels in the CNNs. Experimental results on two fine-grained vehicle datasets demonstrate that the CMP modified CNNs can improve the classification accuracies on the task of fine-grained vehicle classification while a massive amount of parameters are reduced. Moreover, it has competitive performance when comparing with the-state-of-the-art methods.

109 citations

Journal ArticleDOI
TL;DR: This article proposes a clustering-based two-layered (CBTL) algorithm to solve the JCTO problem offline, and designs a deep supervised learning architecture of the convolutional neural network (CNN) to make fast decisions online.
Abstract: In this article, we investigate the UAV-aided edge caching to assist terrestrial vehicular networks in delivering high-bandwidth content files. Aiming at maximizing the overall network throughput, we formulate a joint caching and trajectory optimization (JCTO) problem to make decisions on content placement, content delivery, and UAV trajectory simultaneously. As the decisions interact with each other and the UAV energy is limited, the formulated JCTO problem is intractable directly and timely. To this end, we propose a deep supervised learning scheme to enable intelligent edge for real-time decision-making in the highly dynamic vehicular networks. In specific, we first propose a clustering-based two-layered (CBTL) algorithm to solve the JCTO problem offline. With a given content placement strategy, we devise a time-based graph decomposition method to jointly optimize the content delivery and trajectory design, with which we then leverage the particle swarm optimization (PSO) algorithm to further optimize the content placement. We then design a deep supervised learning architecture of the convolutional neural network (CNN) to make fast decisions online. The network density and content request distribution with spatio-temporal dimensions are labeled as channeled images and input to the CNN-based model, and the results achieved by the CBTL algorithm are labeled as model outputs. With the CNN-based model, a function which maps the input network information to the output decision can be intelligently learnt to make timely inference and facilitate online decisions. We conduct extensive trace-driven experiments, and our results demonstrate both the efficiency of CBTL in solving the JCTO problem and the superior learning performance with the CNN-based model.

109 citations

Journal ArticleDOI
TL;DR: An improved particle swarm optimization algorithm is used to develop an optimal VM placement approach involving a tradeoff between energy consumption and global QoS guarantee for data-intensive services in NCDCs.
Abstract: Many data-intensive services (e.g., planet analysis, gene analysis, and so on) are becoming increasingly reliant on national cloud data centers (NCDCs) because of growing scientific collaboration among countries. In NCDCs, tens of thousands of virtual machines (VMs) are assigned to physical servers to provide data-intensive services with a quality-of-service (QoS) guarantee, and consume a massive amount of energy in the process. Although many VM placement schemes have been proposed to solve this problem of energy consumption, most of these assume that all the physical servers are homogeneous. However, the physical server configurations of NCDCs often differ significantly, which leads to varying energy consumption characteristics. In this paper, we explore an alternative VM placement approach to minimize energy consumption during the provision of data-intensive services with a global QoS guarantee in NCDCs. We use an improved particle swarm optimization algorithm to develop an optimal VM placement approach involving a tradeoff between energy consumption and global QoS guarantee for data-intensive services. Experimental results show that our approach significantly outperforms other approaches to energy optimization and global QoS guarantee in NCDCs.

109 citations


Authors

Showing all 39925 results

NameH-indexPapersCitations
Jie Zhang1784857221720
Jian Li133286387131
Ming Li103166962672
Kang G. Shin9888538572
Lei Liu98204151163
Muhammad Shoaib97133347617
Stan Z. Li9753241793
Qi Tian96103041010
Xiaodong Xu94112250817
Qi-Kun Xue8458930908
Long Wang8483530926
Jing Zhou8453337101
Hao Yu8198127765
Mohsen Guizani79111031282
Muhammad Iqbal7796123821
Network Information
Related Institutions (5)
Beihang University
73.5K papers, 975.6K citations

88% related

National Chiao Tung University
52.4K papers, 956.2K citations

87% related

Harbin Institute of Technology
109.2K papers, 1.6M citations

87% related

Tsinghua University
200.5K papers, 4.5M citations

87% related

Southeast University
79.4K papers, 1.1M citations

86% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202394
2022533
20213,009
20203,720
20193,817
20183,297