scispace - formally typeset
Search or ask a question
Institution

Beijing University of Posts and Telecommunications

EducationBeijing, Beijing, China
About: Beijing University of Posts and Telecommunications is a education organization based out in Beijing, Beijing, China. It is known for research contribution in the topics: MIMO & Quality of service. The organization has 39576 authors who have published 41525 publications receiving 403759 citations. The organization is also known as: BUPT.


Papers
More filters
Proceedings ArticleDOI
07 Jun 2015
TL;DR: A multi-manifold deep metric learning method for image set classification, which aims to recognize an object of interest from a set of image instances captured from varying viewpoints or under varying illuminations, achieves the state-of-the-art performance on five widely used datasets.
Abstract: In this paper, we propose a multi-manifold deep metric learning (MMDML) method for image set classification, which aims to recognize an object of interest from a set of image instances captured from varying viewpoints or under varying illuminations. Motivated by the fact that manifold can be effectively used to model the nonlinearity of samples in each image set and deep learning has demonstrated superb capability to model the nonlinearity of samples, we propose a MMDML method to learn multiple sets of nonlinear transformations, one set for each object class, to nonlinearly map multiple sets of image instances into a shared feature subspace, under which the manifold margin of different class is maximized, so that both discriminative and class-specific information can be exploited, simultaneously. Our method achieves the state-of-the-art performance on five widely used datasets.

198 citations

Journal ArticleDOI
TL;DR: In this paper, the contact properties of monolayer (ML) phosphorene with a series of commonly used metals in a transistor were investigated by using both ab initio electronic structure calculations and more reliable quantum transport simulations.
Abstract: Recently, phosphorene electronic and optoelectronic prototype devices have been fabricated with various metal electrodes. We systematically explore for the first time the contact properties of monolayer (ML) phosphorene with a series of commonly used metals in a transistor by using both ab initio electronic structure calculations and more reliable quantum transport simulations. ML phosphorene undergoes a metallization under the checked metals, and the metallized ML phosphorenes have an unnegligible coupling with channel ML phosphorene. ML phosphorene forms an n-type Schottky contact with Au, Cu, Cr, Al, and Ag electrodes and a p-type Schottky contact with Ti, Ni, and Pd electrodes upon inclusion of such a coupling. The calculated Schottky barrier heights are in good agreement with the available experimental data with Ni and Ti as electrodes. Our findings not only provide an insight into the ML phosphorene–metal interfaces but also help in ML phosphorene based device design.

196 citations

Journal ArticleDOI
TL;DR: The main purpose of the article is to conduct performance comparisons on optical switching technologies in terms of basic performance, network requirements, and system requirements based on a literature survey.
Abstract: Optical switching technologies are very crucial to future mobile broadband all-optical IP networks. Many different optical switching technologies are currently available or under development. The main purpose of the article is to conduct performance comparisons on optical switching technologies in terms of basic performance, network requirements, and system requirements based on a literature survey. The technologies include switching based on optical microelectromechanical systems (MEMS), thermal optical switching, electro-optic switching, and acousto-optic switching technologies. Each optical switching technology has unique performance characteristics specific to the utilized optical phenomena. It might be crucial to integrate some technologies together to achieve a better solution for optical switching. Optical switching is a very hot topic attracting much research effort. Optical MEMS-based switching technology might be one of the most promising approaches at present. Many new optical switching technologies might be created in the near future. Through the impact of nanotechnology, some innovative approaches to optical switching might emerge.

196 citations

Journal ArticleDOI
TL;DR: This paper formulate an energy optimization problem of offloading, which aims at minimizing the overall energy consumption at all system entities and takes into account of the constraints from both computation capabilities and service delay requirement, and develop an artificial fish swarm algorithm based scheme.
Abstract: Mobile edge computing has been proposed in recent years to offload computation tasks from user equipments (UEs) to the network edge to break hardware limitations and resource constraints at UEs. Although there have been some existing works on computation offloading in 5G, most of them fail to take into account the unique property of 5G in their scheme design. In this paper, we consider small-cell network architecture for task offloading. In order to achieve energy efficiency, we model the energy consumption of offloading from both task computation and communication aspects. Besides, transmission scheduling are carried over both the fronthaul and backhaul links. We first formulate an energy optimization problem of offloading, which aims at minimizing the overall energy consumption at all system entities and takes into account of the constraints from both computation capabilities and service delay requirement. We then develop an artificial fish swarm algorithm based scheme to solve the energy optimization problem. Besides, the global convergence property of the our scheme is formally proven. Finally, various simulation results demonstrate the efficiency of our scheme.

196 citations

Journal ArticleDOI
TL;DR: Results indicate that fiber-taper WS2 SAs with smaller waist diameter and longer fused zone are promising photonic devices for ultrashort pulse generation in all-fiber lasers.
Abstract: Tungsten disulphide (WS2), which exhibits excellent saturable absorption properties, has attracted much attention in the applications of photonic devices. In this paper, WS2 is applied for the preparation of a saturable absorber (SA). Using the pulsed laser deposition (PLD) method, WS2 is deposited on the side surface of the tapered fiber. In order to obtain larger non-linearity of the SAs with evanescent wave interaction, the tapered fiber had a smaller waist diameter and longer fused zone. Gold film was deposited on the fiber-taper WS2 SAs to improve their reliability and avoid oxidation and corrosion. Employing the balanced twin-detector method, the modulation depth of the fiber-taper WS2 SAs was measured to be 17.2%. With the fiber-taper WS2 SA, a generated pulse with 246 fs duration and a 57 nm bandwidth was obtained at 1561 nm. The electrical signal to noise ratio was better than 92 dB. To our knowledge, the pulse duration was the shortest among the reported all-fiber lasers with transition metal dichalcogenide (TMD) SAs. These results indicate that fiber-taper WS2 SAs with smaller waist diameter and longer fused zone are promising photonic devices for ultrashort pulse generation in all-fiber lasers.

195 citations


Authors

Showing all 39925 results

NameH-indexPapersCitations
Jie Zhang1784857221720
Jian Li133286387131
Ming Li103166962672
Kang G. Shin9888538572
Lei Liu98204151163
Muhammad Shoaib97133347617
Stan Z. Li9753241793
Qi Tian96103041010
Xiaodong Xu94112250817
Qi-Kun Xue8458930908
Long Wang8483530926
Jing Zhou8453337101
Hao Yu8198127765
Mohsen Guizani79111031282
Muhammad Iqbal7796123821
Network Information
Related Institutions (5)
Beihang University
73.5K papers, 975.6K citations

88% related

National Chiao Tung University
52.4K papers, 956.2K citations

87% related

Harbin Institute of Technology
109.2K papers, 1.6M citations

87% related

Tsinghua University
200.5K papers, 4.5M citations

87% related

Southeast University
79.4K papers, 1.1M citations

86% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202394
2022533
20213,009
20203,720
20193,817
20183,297