scispace - formally typeset
Search or ask a question
Institution

Beijing University of Posts and Telecommunications

EducationBeijing, Beijing, China
About: Beijing University of Posts and Telecommunications is a education organization based out in Beijing, Beijing, China. It is known for research contribution in the topics: MIMO & Quality of service. The organization has 39576 authors who have published 41525 publications receiving 403759 citations. The organization is also known as: BUPT.


Papers
More filters
Journal ArticleDOI
02 Jun 2019-Sensors
TL;DR: The proposed novel intrusion detection model that combines an improved conditional variational AutoEncoder with a deep neural network (DNN), namely ICVAE-DNN is superior to the three well-known oversampling methods in data augmentation and shows better overall accuracy, detection rate and false positive rate than the nine state-of-the-art intrusion detection methods.
Abstract: Intrusion detection systems play an important role in preventing security threats and protecting networks from attacks. However, with the emergence of unknown attacks and imbalanced samples, traditional machine learning methods suffer from lower detection rates and higher false positive rates. We propose a novel intrusion detection model that combines an improved conditional variational AutoEncoder (ICVAE) with a deep neural network (DNN), namely ICVAE-DNN. ICVAE is used to learn and explore potential sparse representations between network data features and classes. The trained ICVAE decoder generates new attack samples according to the specified intrusion categories to balance the training data and increase the diversity of training samples, thereby improving the detection rate of the imbalanced attacks. The trained ICVAE encoder is not only used to automatically reduce data dimension, but also to initialize the weight of DNN hidden layers, so that DNN can easily achieve global optimization through back propagation and fine tuning. The NSL-KDD and UNSW-NB15 datasets are used to evaluate the performance of the ICVAE-DNN. The ICVAE-DNN is superior to the three well-known oversampling methods in data augmentation. Moreover, the ICVAE-DNN outperforms six well-known models in detection performance, and is more effective in detecting minority attacks and unknown attacks. In addition, the ICVAE-DNN also shows better overall accuracy, detection rate and false positive rate than the nine state-of-the-art intrusion detection methods.

141 citations

Journal ArticleDOI
TL;DR: A novel delay energy balanced tasking scheduling (DEBTS) algorithm is proposed to minimize the overall energy consumption while reducing average service delay and delay jitter and it is proved that DEBTS can achieve the theoretical tradeoff between these two performance metrics.
Abstract: Vehicular ad hoc networks, wireless sensor networks, Internet of Things, and mobile device-to-device communications can be modeled as different homogeneous fog networks, wherein similar terminals/things/devices/nodes are sharing their computation, communication, and storage resources in the neighborhood for achieving better system performance through effective collaborations. It is very desirable, but quite challenging, to simultaneously reduce service delay and energy consumption in such networks for delay-sensitive and energy-constraint applications, e.g., virtual reality and online 3-D gaming on mobile devices. In this paper, a cross-layer analytical framework is developed to formulate and study the balance between service delay and energy consumption. An effective control parameter ${V}$ is derived to characterize their tradeoff relationship during dynamic task scheduling processes in fog networks. Combining this analysis with Lyapunov optimization techniques, a novel delay energy balanced tasking scheduling (DEBTS) algorithm is proposed to minimize the overall energy consumption while reducing average service delay and delay jitter. It is proved that DEBTS can achieve the theoretical [ ${O(1/V), O(V)}$ ] tradeoff between these two performance metrics. Further, extensive simulation results show that DEBTS can offer much better delay-energy performance in task scheduling challenges. Specifically, for a typical ${V}$ value of ${4 \times 10^{4}}$ , DEBTS can save 26% and 29% more energy, and at the same time, reduce average service delay by 29% and 32%, than traditional random scheduling and least busy scheduling algorithms, respectively.

141 citations

Journal ArticleDOI
TL;DR: A distributed algorithm based on the machine learning framework of liquid state machine (LSM) is proposed that enables the UAVs to autonomously choose the optimal resource allocation strategies that maximize the number of users with stable queues depending on the network states.
Abstract: In this paper, the problem of joint caching and resource allocation is investigated for a network of cache-enabled unmanned aerial vehicles (UAVs) that service wireless ground users over the LTE licensed and unlicensed bands. The considered model focuses on users that can access both licensed and unlicensed bands while receiving contents from either the cache units at the UAVs directly or via content server-UAV-user links. This problem is formulated as an optimization problem, which jointly incorporates user association, spectrum allocation, and content caching. To solve this problem, a distributed algorithm based on the machine learning framework of liquid state machine (LSM) is proposed. Using the proposed LSM algorithm, the cloud can predict the users’ content request distribution while having only limited information on the network’s and users’ states. The proposed algorithm also enables the UAVs to autonomously choose the optimal resource allocation strategies that maximize the number of users with stable queues depending on the network states. Based on the users’ association and content request distributions, the optimal contents that need to be cached at UAVs and the optimal resource allocation are derived. Simulation results using real datasets show that the proposed approach yields up to 17.8% and 57.1% gains, respectively, in terms of the number of users that have stable queues compared with two baseline algorithms: Q-learning with cache and Q-learning without cache. The results also show that the LSM significantly improves the convergence time of up to 20% compared with conventional learning algorithms such as Q-learning.

141 citations

Journal ArticleDOI
TL;DR: A new and effective reduced method of GO nanosheets, based on the dye-sensitization-induced visible-light reduction mechanism, was developed to prepare reduced GO (rGO) and graphene-based TiO2 composite in the absence of any additional reducing agents.
Abstract: The reduction of graphene oxide (GO) with a large-scale production has been demonstrated to be one of the key steps for the preparation of graphene-based composite materials with various potential applications. Therefore, it is highly required to develop a facile, green, and environmentally friendly route for the effective reduction of GO. In this study, a new and effective reduced method of GO nanosheets, based on the dye-sensitization-induced visible-light reduction mechanism, was developed to prepare reduced GO (rGO) and graphene-based TiO2 composite in the absence of any additional reducing agents. It was found that the dye-sensitization-induced reduction process of GO was accompanied with the formation of TiO2-rGO composite nanostructure. The photocatalytic experimental results indicated that the resultant TiO2-rGO nanocomposites exhibited significantly higher photocatalytic performance than pure TiO2 because of a rapid separation of photogenerated electrons and holes by the rGO cocatalyst.

141 citations

Journal ArticleDOI
TL;DR: This paper considers an energy harvesting cognitive radio system operating in slotted mode, where the secondary user has no wired power supplies and is powered exclusively by energy harvested from ambient environment and finds that the optimal single-slot spectrum sensing strategy outperforms three other multi-slot strategies as well as two existing strategies while the empirical probability of detection is limited under a predefined level.
Abstract: In this paper, we consider an energy harvesting cognitive radio (CR) system operating in slotted mode, where the secondary user (SU) has no wired power supplies and is powered exclusively by energy harvested from ambient environment. The SU can only perform either energy harvesting, spectrum sensing or data transmission at a time due to hardware limitation such that a timeslot is segmented into three non-overlapping fractions. Considering a generalized multi-slot spectrum sensing paradigm and two types of fusion rules: data fusion and decision fusion, we focus on the “harvesting-sensing-throughput” tradeoff and joint optimization for save-ratio, sensing duration, sensing threshold as well as fusion rule to maximize the SU's expected achievable throughput while keeping primary users (PUs) sufficiently protected. For data-fusion spectrum sensing, we translate the original problem into a convex one and show that the optimal solutions for sample number, mini-slot number as well as sensing threshold are non-unique. For decision-fusion spectrum sensing, we propose a two-level algorithm to solve the original problem with in-depth analysis on the convexity of a simplified problem and experiments show that the proposed algorithm is more efficient than differential evolution algorithm. We find that despite the inherent difference between the two types of fusion rules, the optimal data-fusion and decision-fusion strategies both converge to single-slot spectrum sensing while the SU's maximal expected achievable throughput is attained. Simulation results show that the optimal single-slot spectrum sensing strategy outperforms three other multi-slot strategies as well as two existing strategies while the empirical probability of detection is limited under a predefined level.

140 citations


Authors

Showing all 39925 results

NameH-indexPapersCitations
Jie Zhang1784857221720
Jian Li133286387131
Ming Li103166962672
Kang G. Shin9888538572
Lei Liu98204151163
Muhammad Shoaib97133347617
Stan Z. Li9753241793
Qi Tian96103041010
Xiaodong Xu94112250817
Qi-Kun Xue8458930908
Long Wang8483530926
Jing Zhou8453337101
Hao Yu8198127765
Mohsen Guizani79111031282
Muhammad Iqbal7796123821
Network Information
Related Institutions (5)
Beihang University
73.5K papers, 975.6K citations

88% related

National Chiao Tung University
52.4K papers, 956.2K citations

87% related

Harbin Institute of Technology
109.2K papers, 1.6M citations

87% related

Tsinghua University
200.5K papers, 4.5M citations

87% related

Southeast University
79.4K papers, 1.1M citations

86% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202394
2022533
20213,009
20203,720
20193,817
20183,296