scispace - formally typeset
Search or ask a question
Institution

Beijing University of Posts and Telecommunications

EducationBeijing, Beijing, China
About: Beijing University of Posts and Telecommunications is a education organization based out in Beijing, Beijing, China. It is known for research contribution in the topics: MIMO & Quality of service. The organization has 39576 authors who have published 41525 publications receiving 403759 citations. The organization is also known as: BUPT.


Papers
More filters
Posted Content
TL;DR: An Adaptive Training Sample Selection (ATSS) to automatically select positive and negative samples according to statistical characteristics of object significantly improves the performance of anchor-based and anchor-free detectors and bridges the gap between them.
Abstract: Object detection has been dominated by anchor-based detectors for several years. Recently, anchor-free detectors have become popular due to the proposal of FPN and Focal Loss. In this paper, we first point out that the essential difference between anchor-based and anchor-free detection is actually how to define positive and negative training samples, which leads to the performance gap between them. If they adopt the same definition of positive and negative samples during training, there is no obvious difference in the final performance, no matter regressing from a box or a point. This shows that how to select positive and negative training samples is important for current object detectors. Then, we propose an Adaptive Training Sample Selection (ATSS) to automatically select positive and negative samples according to statistical characteristics of object. It significantly improves the performance of anchor-based and anchor-free detectors and bridges the gap between them. Finally, we discuss the necessity of tiling multiple anchors per location on the image to detect objects. Extensive experiments conducted on MS COCO support our aforementioned analysis and conclusions. With the newly introduced ATSS, we improve state-of-the-art detectors by a large margin to $50.7\%$ AP without introducing any overhead. The code is available at this https URL

564 citations

Proceedings ArticleDOI
03 Nov 2014
TL;DR: The problem of cross-modal retrieval, e.g., using a text query to search for images and vice-versa, is considered and a novel model involving correspondence autoencoder (Corr-AE) is proposed here for solving this problem, which is constructed by correlating hidden representations of two uni- modal autoencoders.
Abstract: The problem of cross-modal retrieval, e.g., using a text query to search for images and vice-versa, is considered in this paper. A novel model involving correspondence autoencoder (Corr-AE) is proposed here for solving this problem. The model is constructed by correlating hidden representations of two uni-modal autoencoders. A novel optimal objective, which minimizes a linear combination of representation learning errors for each modality and correlation learning error between hidden representations of two modalities, is used to train the model as a whole. Minimization of correlation learning error forces the model to learn hidden representations with only common information in different modalities, while minimization of representation learning error makes hidden representations are good enough to reconstruct input of each modality. A parameter $\alpha$ is used to balance the representation learning error and the correlation learning error. Based on two different multi-modal autoencoders, Corr-AE is extended to other two correspondence models, here we called Corr-Cross-AE and Corr-Full-AE. The proposed models are evaluated on three publicly available data sets from real scenes. We demonstrate that the three correspondence autoencoders perform significantly better than three canonical correlation analysis based models and two popular multi-modal deep models on cross-modal retrieval tasks.

558 citations

Proceedings ArticleDOI
01 Nov 2015
TL;DR: In this article, a modified VGG-16 network was used to fit CIFAR-10 without severe overfitting and achieved 8.45% error rate on the dataset.
Abstract: Since Krizhevsky won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2012 competition with the brilliant deep convolutional neural networks(D-CNNs), researchers have designed lots of D-CNNs. However, almost all the existing very deep convolutional neural networks are trained on the giant ImageNet datasets. Small datasets like CIFAR-10 has rarely taken advantage of the power of depth since deep models are easy to overfit. In this paper, we proposed a modified VGG-16 network and used this model to fit CIFAR-10. By adding stronger regularizer and using Batch Normalization, we achieved 8.45% error rate on CIFAR-10 without severe overfitting. Our results show that the very deep CNN can be used to fit small datasets with simple and proper modifications and don't need to re-design specific small networks. We believe that if a model is strong enough to fit a large dataset, it can also fit a small one.

552 citations

Proceedings ArticleDOI
19 Jul 2018
TL;DR: A novel Compressed Interaction Network (CIN), which aims to generate feature interactions in an explicit fashion and at the vector-wise level and is named eXtreme Deep Factorization Machine (xDeepFM), which is able to learn certain bounded-degree feature interactions explicitly and can learn arbitrary low- and high-order feature interactions implicitly.
Abstract: Combinatorial features are essential for the success of many commercial models. Manually crafting these features usually comes with high cost due to the variety, volume and velocity of raw data in web-scale systems. Factorization based models, which measure interactions in terms of vector product, can learn patterns of combinatorial features automatically and generalize to unseen features as well. With the great success of deep neural networks (DNNs) in various fields, recently researchers have proposed several DNN-based factorization model to learn both low- and high-order feature interactions. Despite the powerful ability of learning an arbitrary function from data, plain DNNs generate feature interactions implicitly and at the bit-wise level. In this paper, we propose a novel Compressed Interaction Network (CIN), which aims to generate feature interactions in an explicit fashion and at the vector-wise level. We show that the CIN share some functionalities with convolutional neural networks (CNNs) and recurrent neural networks (RNNs). We further combine a CIN and a classical DNN into one unified model, and named this new model eXtreme Deep Factorization Machine (xDeepFM). On one hand, the xDeepFM is able to learn certain bounded-degree feature interactions explicitly; on the other hand, it can learn arbitrary low- and high-order feature interactions implicitly. We conduct comprehensive experiments on three real-world datasets. Our results demonstrate that xDeepFM outperforms state-of-the-art models. We have released the source code of xDeepFM at https://github.com/Leavingseason/xDeepFM.

550 citations

Proceedings ArticleDOI
25 Jul 2019
TL;DR: The core idea is to capture the normal patterns of multivariate time series by learning their robust representations with key techniques such as stochastic variable connection and planar normalizing flow, reconstruct input data by the representations, and use the reconstruction probabilities to determine anomalies.
Abstract: Industry devices (i.e., entities) such as server machines, spacecrafts, engines, etc., are typically monitored with multivariate time series, whose anomaly detection is critical for an entity's service quality management. However, due to the complex temporal dependence and stochasticity of multivariate time series, their anomaly detection remains a big challenge. This paper proposes OmniAnomaly, a stochastic recurrent neural network for multivariate time series anomaly detection that works well robustly for various devices. Its core idea is to capture the normal patterns of multivariate time series by learning their robust representations with key techniques such as stochastic variable connection and planar normalizing flow, reconstruct input data by the representations, and use the reconstruction probabilities to determine anomalies. Moreover, for a detected entity anomaly, OmniAnomaly can provide interpretations based on the reconstruction probabilities of its constituent univariate time series. The evaluation experiments are conducted on two public datasets from aerospace and a new server machine dataset (collected and released by us) from an Internet company. OmniAnomaly achieves an overall F1-Score of 0.86 in three real-world datasets, signicantly outperforming the best performing baseline method by 0.09. The interpretation accuracy for OmniAnomaly is up to 0.89.

541 citations


Authors

Showing all 39925 results

NameH-indexPapersCitations
Jie Zhang1784857221720
Jian Li133286387131
Ming Li103166962672
Kang G. Shin9888538572
Lei Liu98204151163
Muhammad Shoaib97133347617
Stan Z. Li9753241793
Qi Tian96103041010
Xiaodong Xu94112250817
Qi-Kun Xue8458930908
Long Wang8483530926
Jing Zhou8453337101
Hao Yu8198127765
Mohsen Guizani79111031282
Muhammad Iqbal7796123821
Network Information
Related Institutions (5)
Beihang University
73.5K papers, 975.6K citations

88% related

National Chiao Tung University
52.4K papers, 956.2K citations

87% related

Harbin Institute of Technology
109.2K papers, 1.6M citations

87% related

Tsinghua University
200.5K papers, 4.5M citations

87% related

Southeast University
79.4K papers, 1.1M citations

86% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202394
2022533
20213,009
20203,720
20193,817
20183,296