scispace - formally typeset
Search or ask a question
Institution

Beijing University of Posts and Telecommunications

EducationBeijing, Beijing, China
About: Beijing University of Posts and Telecommunications is a education organization based out in Beijing, Beijing, China. It is known for research contribution in the topics: MIMO & Quality of service. The organization has 39576 authors who have published 41525 publications receiving 403759 citations. The organization is also known as: BUPT.


Papers
More filters
Journal ArticleDOI
TL;DR: This work extracts the events from Web news and the users' sentiments from social media, and investigates their joint impacts on the stock price movements via a coupled matrix and tensor factorization framework.
Abstract: Traditional stock market prediction approaches commonly utilize the historical price-related data of the stocks to forecast their future trends. As the Web information grows, recently some works try to explore financial news to improve the prediction. Effective indicators, e.g., the events related to the stocks and the people’s sentiments toward the market and stocks, have been proved to play important roles in the stocks’ volatility, and are extracted to feed into the prediction models for improving the prediction accuracy. However, a major limitation of previous methods is that the indicators are obtained from only a single source whose reliability might be low, or from several data sources but their interactions and correlations among the multi-sourced data are largely ignored. In this work, we extract the events from Web news and the users’ sentiments from social media, and investigate their joint impacts on the stock price movements via a coupled matrix and tensor factorization framework. Specifically, a tensor is firstly constructed to fuse heterogeneous data and capture the intrinsic relations among the events and the investors’ sentiments. Due to the sparsity of the tensor, two auxiliary matrices, the stock quantitative feature matrix and the stock correlation matrix, are constructed and incorporated to assist the tensor decomposition. The intuition behind is that stocks that are highly correlated with each other tend to be affected by the same event. Thus, instead of conducting each stock prediction task separately and independently, we predict multiple correlated stocks simultaneously through their commonalities, which are enabled via sharing the collaboratively factorized low rank matrices between matrices and the tensor. Evaluations on the China A-share stock data and the HK stock data in the year 2015 demonstrate the effectiveness of the proposed model.

136 citations

Journal ArticleDOI
TL;DR: A statistical learning methodology is used to quantify the gap between Mr and Me in a closed form via data fitting, which offers useful design guideline for compressive samplers and develops a two-step compressive spectrum sensing algorithm for wideband cognitive radios as an illustrative application.
Abstract: Compressive sampling techniques can effectively reduce the acquisition costs of high-dimensional signals by utilizing the fact that typical signals of interest are often sparse in a certain domain. For compressive samplers, the number of samples Mr needed to reconstruct a sparse signal is determined by the actual sparsity order Snz of the signal, which can be much smaller than the signal dimension N. However, Snz is often unknown or dynamically varying in practice, and the practical sampling rate has to be chosen conservatively according to an upper bound Smax of the actual sparsity order in lieu of Snz, which can be unnecessarily high. To circumvent such wastage of the sampling resources, this paper introduces the concept of sparsity order estimation, which aims to accurately acquire Snz prior to sparse signal recovery, by using a very small number of samples Me less than Mr. A statistical learning methodology is used to quantify the gap between Mr and Me in a closed form via data fitting, which offers useful design guideline for compressive samplers. It is shown that Me ≥ 1.2Snz log(N/Snz + 2) + 3 for a broad range of sampling matrices. Capitalizing on this gap, this paper also develops a two-step compressive spectrum sensing algorithm for wideband cognitive radios as an illustrative application. The first step quickly estimates the actual sparsity order of the wide spectrum of interest using a small number of samples, and the second step adjusts the total number of collected samples according to the estimated signal sparsity order. By doing so, the overall sampling cost can be minimized adaptively, without degrading the sensing performance.

136 citations

Journal ArticleDOI
TL;DR: An efficient task scheduling algorithm is developed to prioritize multiple applications and prioritize multiple tasks so as to guarantee the completion time constraints of applications and the processing dependency requirements of tasks.
Abstract: Vehicular edge computing (VEC) offers a new paradigm to improve vehicular services and augment the capabilities of vehicles. In this article, we study the problem of task scheduling in VEC, where multiple computation-intensive vehicular applications can be offloaded to roadside units (RSUs) and each application can be further divided into multiple tasks with task dependency. The tasks can be scheduled to different mobile-edge computing servers on RSUs for execution to minimize the average completion time of multiple applications. Considering the completion time constraint of each application and the processing dependency of multiple tasks belonging to the same application, we formulate the multiple tasks scheduling problem as an optimization problem that is NP-hard. To solve the optimization problem, we develop an efficient task scheduling algorithm. The basic idea is to prioritize multiple applications and prioritize multiple tasks so as to guarantee the completion time constraints of applications and the processing dependency requirements of tasks. The numerical results demonstrate that our proposed algorithm can significantly reduce the average completion time of multiple applications compared with benchmark algorithms.

135 citations

Journal ArticleDOI
TL;DR: A layered UAV swarm network architecture is proposed and an optimal number of UAVs is analyzed and a low latency routing algorithm (LLRA) is designed based on the partial location information and the connectivity of the network architecture.
Abstract: Unmanned aerial vehicles (UAVs) can be deployed efficiently to provide high quality of service for Internet of Things (IoT). By using cooperative communication and relay technologies, a large swarm of UAVs can enlarge the effective coverage area of IoT services via multiple relay nodes. However, the low latency service requirement and the dynamic topology of UAV network bring in new challenges for the effective routing optimization among UAVs. In this paper, a layered UAV swarm network architecture is proposed and an optimal number of UAVs is analyzed. Furthermore, a low latency routing algorithm (LLRA) is designed based on the partial location information and the connectivity of the network architecture. Finally, the performance of the proposed LLRA is verified by numerical results, which can decrease the link average delay and improve the packet delivery ratio in contrast to traditional routing algorithms without layered architecture.

135 citations

Journal ArticleDOI
TL;DR: A new scheme to generate a large chirp-rate LCMW based on Fourier domain mode locking technique to break the limitation of mode building time in an OEO and enable fast-tunable chirP production for microwave photonics is proposed.
Abstract: An optoelectronic oscillator (OEO) is a microwave photonic system with a positive feedback loop used to create microwave oscillation with ultra-low phase noise thanks to the employment of a high-quality-factor energy storage element, such as a fiber delay line. For many applications, a frequency-tunable microwave signal or waveform, such as a linearly chirped microwave waveform (LCMW), is also needed. Due to the long characteristic time constant required for building up stable oscillation at an oscillation mode, it is impossible to generate an LCMW with a large chirp rate using a conventional frequency-tunable OEO. In this study, we propose and demonstrate a new scheme to generate a large chirp-rate LCMW based on Fourier domain mode locking technique to break the limitation of mode building time in an OEO. An LCMW with a high chirp rate of 0.34 GHz/μs and a large time-bandwidth product of 166,650 is demonstrated.

135 citations


Authors

Showing all 39925 results

NameH-indexPapersCitations
Jie Zhang1784857221720
Jian Li133286387131
Ming Li103166962672
Kang G. Shin9888538572
Lei Liu98204151163
Muhammad Shoaib97133347617
Stan Z. Li9753241793
Qi Tian96103041010
Xiaodong Xu94112250817
Qi-Kun Xue8458930908
Long Wang8483530926
Jing Zhou8453337101
Hao Yu8198127765
Mohsen Guizani79111031282
Muhammad Iqbal7796123821
Network Information
Related Institutions (5)
Beihang University
73.5K papers, 975.6K citations

88% related

National Chiao Tung University
52.4K papers, 956.2K citations

87% related

Harbin Institute of Technology
109.2K papers, 1.6M citations

87% related

Tsinghua University
200.5K papers, 4.5M citations

87% related

Southeast University
79.4K papers, 1.1M citations

86% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202394
2022533
20213,009
20203,720
20193,817
20183,296