scispace - formally typeset
Search or ask a question
Institution

Beijing University of Technology

EducationBeijing, Beijing, China
About: Beijing University of Technology is a education organization based out in Beijing, Beijing, China. It is known for research contribution in the topics: Microstructure & Laser. The organization has 31929 authors who have published 31987 publications receiving 352112 citations. The organization is also known as: Běijīng Gōngyè Dàxué & Beijing Polytechnic University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, three-dimensional ordered macroporous (3DOM) praseodymium (Pr)-modified Ce-Zr solid solutions were successfully prepared by colloidal crystal templating method.
Abstract: Three-dimensionally ordered macroporous (3DOM) praseodymium (Pr)-modified Ce-Zr solid solutions were successfully prepared by colloidal crystal templating method. They were characterized by the techniques of SEM, XRD, UV-Raman, N2 adsorption, and H2-TPR. 3DOM samples showed higher catalytic activities for soot combustion than corresponding disordered macroporous (DM) ones, which benefits from the enhanced contact efficiency between soot and ordered macroporous structure. In addition, the effects of Ce/Zr ratio on the phase composition and catalytic performances of Ce-Zr-O and Pr-Ce-Zr-O samples for soot oxidation were investigated. The results indicate that the phase compositions of Pr-modified ceria-zirconia solid solutions are similar to those of corresponding ceria-zirconia samples, and cubic–tetragonal phases coexist in the samples with moderate zirconia content, which is favorable for soot combustion. Furthermore, the effects of thermal and hydrothermal treatments on the catalytic properties for soot oxidation of 3DOM CeO2, Ce0.7Zr0.3O2 and Ce0.6Zr0.3Pr0.1O2 were comparatively studied. Compared with 3DOM bare CeO2, 3DOM Ce-Zr-based solid solutions, especially Pr-modified Ce-Zr solid solution Ce0.6Zr0.3Pr0.1O2 exhibited the highest thermal and hydrothermal stability because it possesses the lowest mobility of lattice oxygen among the three samples.

115 citations

Journal ArticleDOI
TL;DR: In this paper, the compressive and flexural strength of a magnesium phosphate cement (MPC) was investigated under different temperatures, and the chemical and physical properties of the MPC were analyzed.

115 citations

Journal ArticleDOI
TL;DR: In this article, a review of the recent research progress in the area of indirect electrolysis using transition metals is presented, which is the impetus for this review. But there is a lack of articles that focus on the recent progress in indirect organic electrosynthesis using transition metal.
Abstract: Organic electrosynthesis has been widely used as an environmentally conscious alternative to conventional methods for redox reactions because it utilizes electric current as a traceless redox agent instead of chemical redox agents. Indirect electrolysis employing a redox catalyst has received tremendous attention, since it provides various advantages compared to direct electrolysis. With indirect electrolysis, overpotential of electron transfer can be avoided, which is inherently milder, thus wide functional group tolerance can be achieved. Additionally, chemoselectivity, regioselectivity, and stereoselectivity can be tuned by the redox catalysts used in indirect electrolysis. Furthermore, electrode passivation can be avoided by preventing the formation of polymer films on the electrode surface. Common redox catalysts include N-oxyl radicals, hypervalent iodine species, halides, amines, benzoquinones (such as DDQ and tetrachlorobenzoquinone), and transition metals. In recent years, great progress has been made in the field of indirect organic electrosynthesis using transition metals as redox catalysts for reaction classes including C–H functionalization, radical cyclization, and cross-coupling of aryl halides-each owing to the diverse reactivity and accessible oxidation states of transition metals. Although various reviews of organic electrosynthesis are available, there is a lack of articles that focus on recent research progress in the area of indirect electrolysis using transition metals, which is the impetus for this review.

115 citations

Journal ArticleDOI
TL;DR: In this article, an experimental study aimed at improving engine idle performance through hydrogen addition was carried out on a 4-cylinder gasoline-fueled spark ignited (SI) engine, which was modified to be fueled with the mixture of gasoline and hydrogen injected into the intake ports simultaneously.

115 citations

Journal ArticleDOI
TL;DR: It is found that the overexpression of Nrf2 promoted proliferation and migration of breast cancers cells and targeting Notch1 signalling pathway may provide a promising strategy for the treatment of NRF2‐driven breast cancer metastasis.
Abstract: Abnormal metabolism of tumour cells is closely related to the occurrence and development of breast cancer, during which the expression of NF-E2-related factor 2 (Nrf2) is of great significance. Metastatic breast cancer is one of the most common causes of cancer death worldwide; however, the molecular mechanism underlying breast cancer metastasis remains unknown. In this study, we found that the overexpression of Nrf2 promoted proliferation and migration of breast cancers cells. Inhibition of Nrf2 and overexpression of Kelch-like ECH-associated protein 1 (Keap1) reduced the expression of glucose-6-phosphate dehydrogenase (G6PD) and transketolase of pentose phosphate pathway, and overexpression of Nrf2 and knockdown of Keap1 had opposite effects. Our results further showed that the overexpression of Nrf2 promoted the expression of G6PD and Hypoxia-inducing factor 1α (HIF-1α) in MCF-7 and MDA-MB-231 cells. Overexpression of Nrf2 up-regulated the expression of Notch1 via G6PD/HIF-1α pathway. Notch signalling pathway affected the proliferation of breast cancer by affecting its downstream gene HES-1, and regulated the migration of breast cancer cells by affecting the expression of EMT pathway. The results suggest that Nrf2 is a potential molecular target for the treatment of breast cancer and targeting Notch1 signalling pathway may provide a promising strategy for the treatment of Nrf2-driven breast cancer metastasis.

115 citations


Authors

Showing all 32228 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Pulickel M. Ajayan1761223136241
James M. Tour14385991364
Dacheng Tao133136268263
Lei Zhang130231286950
Hong-Cai Zhou11448966320
Xiaodong Li104130049024
Lin Li104202761709
Ming Li103166962672
Wenjun Zhang9697638530
Lianzhou Wang9559631438
Miroslav Krstic9595542886
Zhiguo Yuan9363328645
Xiang Gao92135942047
Xiao-yan Li8552831861
Network Information
Related Institutions (5)
Harbin Institute of Technology
109.2K papers, 1.6M citations

95% related

Tsinghua University
200.5K papers, 4.5M citations

94% related

University of Science and Technology of China
101K papers, 2.4M citations

92% related

Northeastern University
58.1K papers, 1.7M citations

91% related

Zhejiang University
183.2K papers, 3.4M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023124
2022611
20213,573
20203,341
20193,075
20182,523