scispace - formally typeset
Search or ask a question
Institution

Beijing University of Technology

EducationBeijing, Beijing, China
About: Beijing University of Technology is a education organization based out in Beijing, Beijing, China. It is known for research contribution in the topics: Microstructure & Laser. The organization has 31929 authors who have published 31987 publications receiving 352112 citations. The organization is also known as: Běijīng Gōngyè Dàxué & Beijing Polytechnic University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a novel Sludge Double Recirculation-Anaerobic/Aerobic/Anoxic process (SDR-AOA) was developed in a continuous-flow reactor.

94 citations

Journal ArticleDOI
27 May 2020-Nature
TL;DR: A seeded growth technique for building a library of single-crystal copper foils with sizes of about 30 × 20 square centimetres and more than 30 kinds of facet, and it is shown that this technique is also applicable to the growth of high-index single-Crystal nickel foils, and the possibility of using the authors' high- index copper foiling as substrates for the epitaxial growth of two-dimensional materials is explored.
Abstract: The production of large single-crystal metal foils with various facet indices has long been a pursuit in materials science owing to their potential applications in crystal epitaxy, catalysis, electronics and thermal engineering1–5. For a given metal, there are only three sets of low-index facets ({100}, {110} and {111}). In comparison, high-index facets are in principle infinite and could afford richer surface structures and properties. However, the controlled preparation of single-crystal foils with high-index facets is challenging, because they are neither thermodynamically6,7 nor kinetically3 favourable compared to low-index facets6–18. Here we report a seeded growth technique for building a library of single-crystal copper foils with sizes of about 30 × 20 square centimetres and more than 30 kinds of facet. A mild pre-oxidation of polycrystalline copper foils, followed by annealing in a reducing atmosphere, leads to the growth of high-index copper facets that cover almost the entire foil and have the potential of growing to lengths of several metres. The creation of oxide surface layers on our foils means that surface energy minimization is not a key determinant of facet selection for growth, as is usually the case. Instead, facet selection is dictated randomly by the facet of the largest grain (irrespective of its surface energy), which consumes smaller grains and eliminates grain boundaries. Our high-index foils can be used as seeds for the growth of other Cu foils along either the in-plane or the out-of-plane direction. We show that this technique is also applicable to the growth of high-index single-crystal nickel foils, and we explore the possibility of using our high-index copper foils as substrates for the epitaxial growth of two-dimensional materials. Other applications are expected in selective catalysis, low-impedance electrical conduction and heat dissipation. Large-area single-crystal high-index copper and nickel foils with several types of facet are fabricated using mild pre-oxidation of the metal foil surface followed by annealing in a reducing atmosphere.

94 citations

Journal ArticleDOI
TL;DR: Based on the idea of damage control, a new type of replaceable damper, namely earthquake-resilient prefabricated column-flange beam-column joint (PCFBCJ), is proposed in this paper.

94 citations

Journal ArticleDOI
TL;DR: In this article, the authors deduced the formulas of equivalent nodal forces for the 2-D plane P waves with arbitrary incident angles and implemented them into the commercial software ABAQUS.

93 citations

Journal ArticleDOI
TL;DR: In vitro and in vivo studies illustrated that the Dox-M@PDA-Btz nanoparticles coupled with laser irradiation could enhance the cytotoxicity, and thus combinational therapy efficacy was achieved when integrating Dox, Btz, and PDA into a single nanoplatform.
Abstract: In this investigation, we have designed and synthesized a novel core–shell polymer nanoparticle system for highly effective chemo–photothermal combination therapy. A nanoscale DSPE-PEG micelle encapsulating doxorubicin (Dox-M) was designed as a core, and then modified by a polydopamine (PDA) shell for photothermal therapy and bortezomib (Btz) administration (Dox-M@PDA–Btz). The facile conjugation of Btz to the catechol-containing PDA shell can form a reversible pH-sensitive boronic acid–catechol conjugate to create a stimuli-responsive drug carrier system. As expected, the micelle@PDA core–shell nanoparticles exhibited satisfactory photothermal efficiency, which has potential for thermal ablation of malignant tissues. In addition, on account of the PDA modification, both Dox and Btz release processes were pH-dependent and NIR-dependent. Both in vitro and in vivo studies illustrated that the Dox-M@PDA–Btz nanoparticles coupled with laser irradiation could enhance the cytotoxicity, and thus combinational therapy efficacy was achieved when integrating Dox, Btz, and PDA into a single nanoplatform. Altogether, our current study indicated that the micelle@polydopamine core–shell nanoparticles could be applied for NIR/pH-responsive sustained-release and synergized chemo–photothermal therapy for breast cancer.

93 citations


Authors

Showing all 32228 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Pulickel M. Ajayan1761223136241
James M. Tour14385991364
Dacheng Tao133136268263
Lei Zhang130231286950
Hong-Cai Zhou11448966320
Xiaodong Li104130049024
Lin Li104202761709
Ming Li103166962672
Wenjun Zhang9697638530
Lianzhou Wang9559631438
Miroslav Krstic9595542886
Zhiguo Yuan9363328645
Xiang Gao92135942047
Xiao-yan Li8552831861
Network Information
Related Institutions (5)
Harbin Institute of Technology
109.2K papers, 1.6M citations

95% related

Tsinghua University
200.5K papers, 4.5M citations

94% related

University of Science and Technology of China
101K papers, 2.4M citations

92% related

Northeastern University
58.1K papers, 1.7M citations

91% related

Zhejiang University
183.2K papers, 3.4M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023124
2022611
20213,573
20203,341
20193,075
20182,523