scispace - formally typeset
Search or ask a question
Institution

Beijing University of Technology

EducationBeijing, Beijing, China
About: Beijing University of Technology is a education organization based out in Beijing, Beijing, China. It is known for research contribution in the topics: Microstructure & Computer science. The organization has 31929 authors who have published 31987 publications receiving 352112 citations. The organization is also known as: Běijīng Gōngyè Dàxué & Beijing Polytechnic University.


Papers
More filters
Proceedings ArticleDOI
20 Aug 2017
TL;DR: A multi-view deep learning model to capture brain abnormality from multi-channel epileptic EEG signals for seizure detection and is effective in detecting epileptic seizure is proposed.
Abstract: With the advances in pervasive sensor technologies, physiological signals can be captured continuously to prevent the serious outcomes caused by epilepsy. Detection of epileptic seizure onset on collected multi-channel electroencephalogram (EEG) has attracted lots of attention recently. Deep learning is a promising method to analyze large-scale unlabeled data. In this paper, we propose a multi-view deep learning model to capture brain abnormality from multi-channel epileptic EEG signals for seizure detection. Specifically, we first generate EEG spectrograms using short-time Fourier transform (STFT) to represent the time-frequency information after signal segmentation. Second, we adopt stacked sparse denoising autoencoders (SSDA) to unsupervisedly learn multiple features by considering both intra and inter correlation of EEG channels, denoted as intra-channel and cross-channel features, respectively. Third, we add an SSDA-based channel selection procedure using proposed response rate to reduce the dimension of intra-channel feature. Finally, we concatenate the learned multi-features and apply a fully-connected SSDA model with softmax classifier to jointly learn the cross-patient seizure detector in a supervised fashion. To evaluate the performance of the proposed model, we carry out experiments on a real world benchmark EEG dataset and compare it with six baselines. Extensive experimental results demonstrate that the proposed learning model is able to extract latent features with meaningful interpretation, and hence is effective in detecting epileptic seizure.

88 citations

Journal ArticleDOI
TL;DR: In this article, a three dimensional numerical model based on a unified pipe-network method (UPM) is developed for modeling this coupling process by explicitly introducing fracture networks embedded into porous media.

88 citations

Journal ArticleDOI
02 Jan 2019
TL;DR: In this article, the design of efficient and durable bifunctional catalysts toward ORR and oxygen evolution reaction (OER) is discussed for rechargeable zinc-air batteries.
Abstract: Rational design of efficient and durable bifunctional catalysts toward oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is important for rechargeable zinc–air batteries. Herein, ...

88 citations

Journal ArticleDOI
01 Mar 2018-Calcolo
TL;DR: Some error analyses on virtual element methods including inverse inequalities, norm equivalence, and interpolation error estimates are developed for polygonal meshes, each element of which admits a virtual quasi-uniform triangulation.
Abstract: Some error analyses on virtual element methods (VEMs) including inverse inequalities, norm equivalence, and interpolation error estimates are developed for polygonal meshes, each element of which admits a virtual quasi-uniform triangulation. This sub-mesh regularity covers the usual ones used for theoretical analysis of VEMs, and the proofs are presented by means of standard technical tools in finite element methods.

88 citations

Journal ArticleDOI
TL;DR: A novel methodology of deep learning prediction is proposed, and based on this, a deep learning hybrid prediction model for stock markets—CEEMD-PCA-LSTM is constructed, which outperforms benchmark models in both absolute profitability performance and risk-adjusted profitability performance.
Abstract: Deep learning is well-known for extracting high-level abstract features from a large amount of raw data without relying on prior knowledge, which is potentially attractive in forecasting financial time series. Long short-term memory (LSTM) networks are deemed as state-of-the-art techniques in sequence learning, which are less commonly applied to financial time series predictions, yet inherently suitable for this domain. We propose a novel methodology of deep learning prediction, and based on this, construct a deep learning hybrid prediction model for stock markets—CEEMD-PCA-LSTM. In this model, complementary ensemble empirical mode decomposition (CEEMD), as a sequence smoothing and decomposition module, can decompose the fluctuations or trends of different scales of time series step by step, generating a series of intrinsic mode functions (IMFs) with different characteristic scales. Then, with retaining the most of information on raw data, PCA reduces dimension of the decomposed IMFs component, eliminating the redundant information and improving prediction response speed. After that, high-level abstract features are separately fed into LSTM networks to predict closing price of the next trading day for each component. Finally, synthesizing the predicted values of individual components is utilized to obtain a final predicted value. The empirical results of six representative stock indices from three types of markets indicate that our proposed model outperforms benchmark models in terms of predictive accuracy, i.e., lower test error and higher directional symmetry. Leveraging key research findings, we perform trading simulations to validate that the proposed model outperforms benchmark models in both absolute profitability performance and risk-adjusted profitability performance. Furthermore, model robustness test unveils the more stable robustness compared to benchmark models.

88 citations


Authors

Showing all 32228 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Pulickel M. Ajayan1761223136241
James M. Tour14385991364
Dacheng Tao133136268263
Lei Zhang130231286950
Hong-Cai Zhou11448966320
Xiaodong Li104130049024
Lin Li104202761709
Ming Li103166962672
Wenjun Zhang9697638530
Lianzhou Wang9559631438
Miroslav Krstic9595542886
Zhiguo Yuan9363328645
Xiang Gao92135942047
Xiao-yan Li8552831861
Network Information
Related Institutions (5)
Harbin Institute of Technology
109.2K papers, 1.6M citations

95% related

Tsinghua University
200.5K papers, 4.5M citations

94% related

University of Science and Technology of China
101K papers, 2.4M citations

92% related

Northeastern University
58.1K papers, 1.7M citations

91% related

Zhejiang University
183.2K papers, 3.4M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023124
2022611
20213,573
20203,341
20193,075
20182,523