scispace - formally typeset
Search or ask a question
Institution

Bell Labs

Company
About: Bell Labs is a based out in . It is known for research contribution in the topics: Laser & Optical fiber. The organization has 36499 authors who have published 59862 publications receiving 3190823 citations. The organization is also known as: Bell Laboratories & AT&T Bell Laboratories.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a new augmented version of coupled-cluster theory, denoted as CCSD(T), is proposed to remedy some of the deficiencies of previous augmented coupledcluster models.

7,249 citations

Proceedings ArticleDOI
Peter W. Shor1
20 Nov 1994
TL;DR: Las Vegas algorithms for finding discrete logarithms and factoring integers on a quantum computer that take a number of steps which is polynomial in the input size, e.g., the number of digits of the integer to be factored are given.
Abstract: A computer is generally considered to be a universal computational device; i.e., it is believed able to simulate any physical computational device with a cost in computation time of at most a polynomial factor: It is not clear whether this is still true when quantum mechanics is taken into consideration. Several researchers, starting with David Deutsch, have developed models for quantum mechanical computers and have investigated their computational properties. This paper gives Las Vegas algorithms for finding discrete logarithms and factoring integers on a quantum computer that take a number of steps which is polynomial in the input size, e.g., the number of digits of the integer to be factored. These two problems are generally considered hard on a classical computer and have been used as the basis of several proposed cryptosystems. We thus give the first examples of quantum cryptanalysis. >

6,961 citations

Journal ArticleDOI
Joseph B. Kruskal1
TL;DR: The fundamental hypothesis is that dissimilarities and distances are monotonically related, and a quantitative, intuitively satisfying measure of goodness of fit is defined to this hypothesis.
Abstract: Multidimensional scaling is the problem of representingn objects geometrically byn points, so that the interpoint distances correspond in some sense to experimental dissimilarities between objects. In just what sense distances and dissimilarities should correspond has been left rather vague in most approaches, thus leaving these approaches logically incomplete. Our fundamental hypothesis is that dissimilarities and distances are monotonically related. We define a quantitative, intuitively satisfying measure of goodness of fit to this hypothesis. Our technique of multidimensional scaling is to compute that configuration of points which optimizes the goodness of fit. A practical computer program for doing the calculations is described in a companion paper.

6,875 citations

Journal ArticleDOI
Gerard J. Foschini1
TL;DR: This paper addresses digital communication in a Rayleigh fading environment when the channel characteristic is unknown at the transmitter but is known (tracked) at the receiver with the aim of leveraging the already highly developed 1-D codec technology.
Abstract: This paper addresses digital communication in a Rayleigh fading environment when the channel characteristic is unknown at the transmitter but is known (tracked) at the receiver. Inventing a codec architecture that can realize a significant portion of the great capacity promised by information theory is essential to a standout long-term position in highly competitive arenas like fixed and indoor wireless. Use (n T , n R ) to express the number of antenna elements at the transmitter and receiver. An (n, n) analysis shows that despite the n received waves interfering randomly, capacity grows linearly with n and is enormous. With n = 8 at 1% outage and 21-dB average SNR at each receiving element, 42 b/s/Hz is achieved. The capacity is more than 40 times that of a (1, 1) system at the same total radiated transmitter power and bandwidth. Moreover, in some applications, n could be much larger than 8. In striving for significant fractions of such huge capacities, the question arises: Can one construct an (n, n) system whose capacity scales linearly with n, using as building blocks n separately coded one-dimensional (1-D) subsystems of equal capacity? With the aim of leveraging the already highly developed 1-D codec technology, this paper reports just such an invention. In this new architecture, signals are layered in space and time as suggested by a tight capacity bound.

6,812 citations

Book
Bjarne Stroustrup1
01 Jan 1985
TL;DR: Bjarne Stroustrup makes C even more accessible to those new to the language, while adding advanced information and techniques that even expert C programmers will find invaluable.
Abstract: From the Publisher: Written by Bjarne Stroustrup, the creator of C, this is the world's most trusted and widely read book on C. For this special hardcover edition, two new appendixes on locales and standard library exception safety have been added. The result is complete, authoritative coverage of the C language, its standard library, and key design techniques. Based on the ANSI/ISO C standard, The C Programming Language provides current and comprehensive coverage of all C language features and standard library components. For example: abstract classes as interfaces class hierarchies for object-oriented programming templates as the basis for type-safe generic software exceptions for regular error handling namespaces for modularity in large-scale software run-time type identification for loosely coupled systems the C subset of C for C compatibility and system-level work standard containers and algorithms standard strings, I/O streams, and numerics C compatibility, internationalization, and exception safety Bjarne Stroustrup makes C even more accessible to those new to the language, while adding advanced information and techniques that even expert C programmers will find invaluable.

6,795 citations


Authors

Showing all 36526 results

NameH-indexPapersCitations
Yoshua Bengio2021033420313
David R. Williams1782034138789
John A. Rogers1771341127390
Zhenan Bao169865106571
Stephen R. Forrest1481041111816
Bernhard Schölkopf1481092149492
Thomas S. Huang1461299101564
Kurt Wüthrich143739103253
John D. Joannopoulos137956100831
Steven G. Louie13777788794
Joss Bland-Hawthorn136111477593
Marvin L. Cohen13497987767
Federico Capasso134118976957
Christos Faloutsos12778977746
Robert J. Cava125104271819
Network Information
Related Institutions (5)
IBM
253.9K papers, 7.4M citations

90% related

Georgia Institute of Technology
119K papers, 4.6M citations

89% related

University of California, Santa Barbara
80.8K papers, 4.6M citations

89% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

88% related

Princeton University
146.7K papers, 9.1M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20233
202245
2021479
2020712
2019750
2018862