scispace - formally typeset
Search or ask a question
Institution

Bharathiar University

EducationCoimbatore, Tamil Nadu, India
About: Bharathiar University is a education organization based out in Coimbatore, Tamil Nadu, India. It is known for research contribution in the topics: Thin film & Adsorption. The organization has 5812 authors who have published 8628 publications receiving 143934 citations. The organization is also known as: BU.


Papers
More filters
Journal ArticleDOI
TL;DR: Using simple and low cost polyol method, α-NiS particles are synthesized at different pH conditions (pH 7 −pH 14) using single phase formation and possible functional groups of αNiS are identified through X-ray diffraction (XRD), and Fourier transforms infrared (FT-IR) spectroscopy, respectively as mentioned in this paper.

57 citations

Journal ArticleDOI
TL;DR: A novel method of seaweed-mediated synthesis of silver nanoparticles (AgNP) using the spongeweed Codium tomentosum, acting as a reducing and capping agent is proposed, which may be potential candidates to develop novel and effective tools in the fight against Plasmodium parasites and their mosquito vectors.
Abstract: Mosquitoes act as vectors of devastating pathogens and parasites, representing a key threat for millions of humans and animals worldwide. The control of mosquito-borne diseases is facing a number of crucial challenges, including the emergence of artemisinin and chloroquine resistance in Plasmodium parasites, as well as the presence of mosquito vectors resistant to synthetic and microbial pesticides. Therefore, eco-friendly tools are urgently required. Here, a synergic approach relying to nanotechnologies and biological control strategies is proposed. The marine environment is an outstanding reservoir of bioactive natural products, which have many applications against pests, parasites, and pathogens. We proposed a novel method of seaweed-mediated synthesis of silver nanoparticles (AgNP) using the spongeweed Codium tomentosum, acting as a reducing and capping agent. AgNP were characterized by UV-Vis spectroscopy, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). In mosquitocidal assays, the 50 % lethal concentration (LC50) of C. tomentosum extract against Anopheles stephensi ranged from 255.1 (larva I) to 487.1 ppm (pupa). LC50 of C. tomentosum-synthesized AgNP ranged from 18.1 (larva I) to 40.7 ppm (pupa). In laboratory, the predation efficiency of Mesocyclops aspericornis copepods against A. stephensi larvae was 81, 65, 17, and 9 % (I, II, III, and IV instar, respectively). In AgNP contaminated environment, predation was not affected; 83, 66, 19, and 11 % (I, II, III, and IV). The anti-plasmodial activity of C. tomentosum extract and spongeweed-synthesized AgNP was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. Fifty percent inhibitory concentration (IC50) of C. tomentosum were 51.34 μg/ml (CQ-s) and 65.17 μg/ml (CQ-r); C. tomentosum-synthesized AgNP achieved IC50 of 72.45 μg/ml (CQ-s) and 76.08 μg/ml (CQ-r). Furthermore, low doses of the AgNP inhibited the growth of Bacillus subtilis, Klebsiella pneumoniae, and Salmonella typhi, using the agar disk diffusion and minimum inhibitory concentration protocol. Overall, C. tomentosum metabolites and spongeweed-synthesized AgNP may be potential candidates to develop novel and effective tools in the fight against Plasmodium parasites and their mosquito vectors. The employ of ultra-low doses of nanomosquitocides in synergy with cyclopoid crustaceans seems a promising green route for effective mosquito control programs.

57 citations

Journal ArticleDOI
01 Apr 2014
TL;DR: Metal ion like copper is essential for better biodegradation of Benzo[a]pyrene and natural mediator such as vanillin may play a significant role in the degradation of aromatic compounds by white-rot fungi.
Abstract: Benzo[a]pyrene is considered as a priority pollutant because of its carcinogenic, teratogenic and mutagenic effects. The highly recalcitrant nature of Benzo[a]pyrene poses a major problem for its degradation. White-rot fungi such as Pleurotus ostreatus can degrade Benzo[a]pyrene by enzymes like laccase and manganese peroxidase. The present investigation was carried out to determine the extent of Benzo[a]pyrene degradation by the PO-3, a native isolate of P. ostreatus, in the presence of heavy metals and ligninolytic enzyme mediators. Modified mineral salt medium was supplemented with 5 mM concentration of different heavy metal salts and ethylenediaminetetraacetic acid. Vanillin and 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonate) (1 and 5 mM) were used to study the effect of mediators. Results indicated that P. ostreatus PO-3 degraded 71.2 % of Benzo[a]pyrene in the presence of copper ions. Moderate degradation was observed in the presence of zinc and manganese. Both biomass formation and degradation were severely affected in the presence of all other heavy metal salts used in the study. Copper at 15 mM concentration supported the best degradation (74.2 %), beyond which the degradation progressively reduced. Among the mediators, 1 mM 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonate) supported 78.7 % degradation and 83.6 % degradation was observed under the influence of 5 mM vanillin. Thus, metal ion like copper is essential for better biodegradation of Benzo[a]pyrene. Compared to synthetic laccase mediator like 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonate), natural mediator such as vanillin may play a significant role in the degradation of aromatic compounds by white-rot fungi.

57 citations

Journal ArticleDOI
TL;DR: In vitro baicalein release profile demonstrated the delivery of baicalsein from the CS nanoparticles is a two stage process, with higher loading efficiency and encapsulation efficiency.

57 citations

Journal ArticleDOI
TL;DR: In this paper, high efficient copper oxide (CuO) nanorods were synthesized by using one step sonochemical method under room temperature with change in NaOH concentration and XRD confirms the prepared nanorod are in pure monoclinic phase with lattice constants a ǫ = 4.68 A, b à à = 3.42 A, and c à > 5.13 A and FESEM analysis reveals an average diameter of 50-100 nm.

57 citations


Authors

Showing all 5855 results

Network Information
Related Institutions (5)
Aligarh Muslim University
16.4K papers, 289K citations

93% related

Banaras Hindu University
23.9K papers, 464.6K citations

92% related

VIT University
24.4K papers, 261.8K citations

92% related

University of Hyderabad
13K papers, 237.6K citations

92% related

Panjab University, Chandigarh
18.7K papers, 461K citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202321
2022113
2021807
2020694
2019792
2018813