scispace - formally typeset
Search or ask a question
Institution

Bidhan Chandra Krishi Viswavidyalaya

EducationKrishnanagar, India
About: Bidhan Chandra Krishi Viswavidyalaya is a education organization based out in Krishnanagar, India. It is known for research contribution in the topics: Population & Soil water. The organization has 1541 authors who have published 1571 publications receiving 22611 citations. The organization is also known as: BCKV & Bidhan Chandra Agricultural University.


Papers
More filters
Journal ArticleDOI
TL;DR: Impact of pesticides use in agriculture: their benefits and hazards, and the risks and benefits to human health.
Abstract: The term pesticide covers a wide range of compounds including insecticides, fungicides, herbicides, rodenticides, molluscicides, nematicides, plant growth regulators and others. Among these, organochlorine (OC) insecticides, used successfully in controlling a number of diseases, such as malaria and typhus, were banned or restricted after the 1960s in most of the technologically advanced countries. The introduction of other synthetic insecticides – organophosphate (OP) insecticides in the 1960s, carbamates in 1970s and pyrethroids in 1980s and the introduction of herbicides and fungicides in the 1970s–1980s contributed greatly to pest control and agricultural output. Ideally a pesticide must be lethal to the targeted pests, but not to non-target species, including man. Unfortunately, this is not the case, so the controversy of use and abuse of pesticides has surfaced. The rampant use of these chemicals, under the adage, “if little is good, a lot more will be better” has played havoc with human and other life forms. Production and usage of pesticides in India The production of pesticides started in India in 1952 with the establishment of a plant for the production of BHC near Calcutta, and India is now the second largest manufacturer of pesticides in Asia after China and ranks twelfth globally (Mathur, 1999). There has been a steady growth in the production of technical grade pesticides in India, from 5,000 metric tons in 1958 to 102,240 metric tons in 1998. In 1996–97 the demand for pesticides in terms of value was estimated to be around Rs. 22 billion (USD 0.5 billion), which is about 2% of the total world market. The pattern of pesticide usage in India is different from that for the world in general. As can be seen in Figure 1, in India 76% of the pesticide used is insecticide, as against 44% globally (Mathur, 1999). The use of herbicides and fungicides is correspondingly less heavy. The main use of pesticides in India is for cotton crops (45%), followed by paddy and wheat. Figure 1 Consumption pattern of pesticides. Benefits of pesticides The primary benefits are the consequences of the pesticides' effects – the direct gains expected from their use. For example the effect of killing caterpillars feeding on the crop brings the primary benefit of higher yields and better quality of cabbage. The three main effects result in 26 primary benefits ranging from protection of recreational turf to saved human lives. The secondary benefits are the less immediate or less obvious benefits that result from the primary benefits. They may be subtle, less intuitively obvious, or of longer term. It follows that for secondary benefits it is therefore more difficult to establish cause and effect, but nevertheless they can be powerful justifications for pesticide use. For example the higher cabbage yield might bring additional revenue that could be put towards children's education or medical care, leading to a healthier, better educated population. There are various secondary benefits identified, ranging from fitter people to conserved biodiversity. Improving productivity Tremendous benefits have been derived from the use of pesticides in forestry, public health and the domestic sphere – and, of course, in agriculture, a sector upon which the Indian economy is largely dependent. Food grain production, which stood at a mere 50 million tons in 1948–49, had increased almost fourfold to 198 million tons by the end of 1996–97 from an estimated 169 million hectares of permanently cropped land. This result has been achieved by the use of high-yield varieties of seeds, advanced irrigation technologies and agricultural chemicals (Employment Information: Indian Labour Statistics, 1994). Similarly outputs and productivity have increased dramatically in most countries, for example wheat yields in the United Kingdom, corn yields in the USA. Increases in productivity have been due to several factors including use of fertiliser, better varieties and use of machinery. Pesticides have been an integral part of the process by reducing losses from the weeds, diseases and insect pests that can markedly reduce the amount of harvestable produce. Warren (1998) also drew attention to the spectacular increases in crop yields in the United States in the twentieth century. Webster et al. (1999) stated that “considerable economic losses” would be suffered without pesticide use and quantified the significant increases in yield and economic margin that result from pesticide use. Moreover, in the environment most pesticides undergo photochemical transformation to produce metabolites which are relatively non-toxic to both human beings and the environment (Kole et al., 1999).

2,439 citations

Journal ArticleDOI
15 Apr 2017-Geoderma
TL;DR: In this paper, the authors surveyed the soil organic carbon (SOC) stock estimates and sequestration potentials from 20 regions in the world (New Zealand, Chile, South Africa, Australia, Tanzania, Indonesia, Kenya, Nigeria, India, China Taiwan, South Korea, China Mainland, United States of America, France, Canada, Belgium, England & Wales, Ireland, Scotland, and Russia).

1,171 citations

Journal ArticleDOI
TL;DR: Physico-chemical properties of the plant and animal resources that are being used as feedstocks for biodiesel production are reviewed to help meet the ever increasing demand of biodieselProduction.

680 citations

Journal ArticleDOI
TL;DR: In this article, a community initiative to identify major unsolved scientific problems in hydrology motivated by a need for stronger harmonisation of research efforts is described. But despite the diversity of the participants (230 scientists in total), the process revealed much about community priorities and the state of our science: a preference for continuity in research questions rather than radical departures or redirections from past and current work.
Abstract: This paper is the outcome of a community initiative to identify major unsolved scientific problems in hydrology motivated by a need for stronger harmonisation of research efforts. The procedure involved a public consultation through online media, followed by two workshops through which a large number of potential science questions were collated, prioritised, and synthesised. In spite of the diversity of the participants (230 scientists in total), the process revealed much about community priorities and the state of our science: a preference for continuity in research questions rather than radical departures or redirections from past and current work. Questions remain focused on the process-based understanding of hydrological variability and causality at all space and time scales. Increased attention to environmental change drives a new emphasis on understanding how change propagates across interfaces within the hydrological system and across disciplinary boundaries. In particular, the expansion of the human footprint raises a new set of questions related to human interactions with nature and water cycle feedbacks in the context of complex water management problems. We hope that this reflection and synthesis of the 23 unsolved problems in hydrology will help guide research efforts for some years to come.

469 citations


Authors

Showing all 1566 results

NameH-indexPapersCitations
Koushik Sen5924517366
Paul L. G. Vlek582379750
Ashim K. Datta522458496
Somnath Bhattacharyya373615876
Priyadarsi De361764280
Debargha Mukherjee332034087
Biswapati Mandal321484541
Arnab Kundu301443111
Sanjio S. Zade301133491
Chittaranjan Kole29823724
Mahantapas Kundu291282667
Sanjeev K. Gupta282802773
Shabir H. Wani272013619
Narayan Banerjee271622592
Suranjana Saha254139498
Network Information
Related Institutions (5)
Indian Agricultural Research Institute
9.1K papers, 188.4K citations

87% related

Punjab Agricultural University
6.7K papers, 100.6K citations

84% related

Indian Council of Agricultural Research
13.6K papers, 149.9K citations

84% related

International Institute of Tropical Agriculture
4.3K papers, 119K citations

81% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20238
202234
2021170
2020179
201998
2018126