scispace - formally typeset
Search or ask a question
Institution

Bielefeld University

EducationBielefeld, Nordrhein-Westfalen, Germany
About: Bielefeld University is a education organization based out in Bielefeld, Nordrhein-Westfalen, Germany. It is known for research contribution in the topics: Population & Quantum chromodynamics. The organization has 10123 authors who have published 26576 publications receiving 728250 citations. The organization is also known as: University of Bielefeld & UNIVERSITAET BIELEFELD.


Papers
More filters
Journal ArticleDOI
TL;DR: The authors examined cross-cultural perceptions of causal attributions pertinent to success and failure in achievement-related contexts and found that there was high agreement among the two social class groups as well as among four of the nations regarding the ratings of specific causes on the causal dimensions.
Abstract: The present study examines cross-cultural perceptions of causal attributions pertinent to success and failure in achievement-related contexts. Two groups of participants(taxi drivers and civil servants) from five nations (Belgium, West Germany, India, South Korea, and England) rated 22 causal ascriptions (including ability, effort, task difficulty, and luck) on four causal properties (locus, stability, controllability, and globality). There was high agreement among the two social class groups as well as among four of the nations regarding the ratings of specific causes on the causal dimensions. However, Indian respondents rated all causes as more external, variable, and uncontrollable than did participants from the other cultures. With the exception of the Indian data, the results suggest that a priori classifications of causal attributions have cross-cultural validity and that causal dimensions suggested by attribution theorists capture basic aspects of the meanings of causes that are shared in different...

939 citations

Journal ArticleDOI
25 Oct 2007-Nature
TL;DR: The ability to obtain direct time-domain access to charge dynamics with attosecond resolution by probing photoelectron emission from single-crystal tungsten is demonstrated and illustrates thatAttosecond metrology constitutes a powerful tool for exploring not only gas-phase systems, but also fundamental electronic processes occurring on the attose Cond timescale in condensed-matter systems and on surfaces.
Abstract: Electrons move in solids at very high speed — traversing atomic layers and interfaces within tens to hundreds of attoseconds (an attosecond is a billionth of a billionth of a second). These astonishingly brief travel times will ultimately limit the speed of the electronics of the future. Physicists have now experimentally probed such electron dynamics in real time. The cover illustrates the first attosecond spectroscopic measurement in a solid, revealing a 110-attosecond difference in the travel time of two different types of electrons following photoexcitation in a tungsten crystal. The ability to time electrons moving in solids over merely a few interatomic distances makes it possible to probe the solid-state electronic processes occurring at the ultimate speed limit and thus helps to advance technologies such as computation, data storage and photovoltaics, which all rely on exquisite control of electron transport in ever smaller structures of solid matter. When exposing a tungsten crystal to intense light, the travel times of emitted electrons differ by 110 attoseconds, depending on whether they were originally tightly bound to one atom in the crystal or delocalized over many atoms. This ability to directly probe fundamental aspects of solid-state electron dynamics could aid the further development of modern technologies such as electronics, information processing and photovoltaics. Comprehensive knowledge of the dynamic behaviour of electrons in condensed-matter systems is pertinent to the development of many modern technologies, such as semiconductor and molecular electronics, optoelectronics, information processing and photovoltaics. Yet it remains challenging to probe electronic processes, many of which take place in the attosecond (1 as = 10-18 s) regime. In contrast, atomic motion occurs on the femtosecond (1 fs = 10-15 s) timescale and has been mapped in solids in real time1,2 using femtosecond X-ray sources3. Here we extend the attosecond techniques4,5 previously used to study isolated atoms in the gas phase to observe electron motion in condensed-matter systems and on surfaces in real time. We demonstrate our ability to obtain direct time-domain access to charge dynamics with attosecond resolution by probing photoelectron emission from single-crystal tungsten. Our data reveal a delay of approximately 100 attoseconds between the emission of photoelectrons that originate from localized core states of the metal, and those that are freed from delocalized conduction-band states. These results illustrate that attosecond metrology constitutes a powerful tool for exploring not only gas-phase systems, but also fundamental electronic processes occurring on the attosecond timescale in condensed-matter systems and on surfaces.

929 citations

Journal ArticleDOI
TL;DR: In this article, the medium induced energy loss spectrum of a high energy quark or gluon traversing a hot QCD medium of finite volume is studied, where the interaction is modeled by a simple picture of static scattering centres.

907 citations

Journal ArticleDOI
TL;DR: This work identified and confirmed additional target genes of the R2R3-MYB subgroup 7 factors, including the UDP-glycosyltransferases UGT91A1 and UGT84A1, and demonstrated that the accumulation of distinct and structurally identified flavonol glycosides in seedlings correlates with the expression domains of the different R2r3- MYB factors.
Abstract: The genes MYB11, MYB12 and MYB111 share significant structural similarity and form subgroup 7 of the Arabidopsis thaliana R2R3-MYB gene family. To determine the regulatory potential of these three transcription factors, we used a combination of genetic, functional genomics and metabolite analysis approaches. MYB11, MYB12 and MYB111 show a high degree of functional similarity and display very similar target gene specificity for several genes of flavonoid biosynthesis, including CHALCONE SYNTHASE, CHALCONE ISOMERASE, FLAVANONE 3-HYDROXYLASE and FLAVONOL SYNTHASE1. Seedlings of the triple mutant myb11 myb12 myb111, which genetically lack a complete subgroup of R2R3-MYB genes, do not form flavonols while the accumulation of anthocyanins is not affected. In developing seedlings, MYB11, MYB12 and MYB111 act in an additive manner due to their differential spatial activity; MYB12 controls flavonol biosynthesis mainly in the root, while MYB111 controls flavonol biosynthesis primarily in cotyledons. We identified and confirmed additional target genes of the R2R3-MYB subgroup 7 factors, including the UDP-glycosyltransferases UGT91A1 and UGT84A1, and we demonstrate that the accumulation of distinct and structurally identified flavonol glycosides in seedlings correlates with the expression domains of the different R2R3-MYB factors. Therefore, we refer to these genes as PFG1-3 for 'PRODUCTION OF FLAVONOL GLYCOSIDES'.

901 citations


Authors

Showing all 10375 results

NameH-indexPapersCitations
Stefan Grimme113680105087
Alfred Pühler10265845871
James Barber10264242397
Swagata Mukherjee101104846234
Hans-Joachim Werner9831748508
Krzysztof Redlich9860932693
Graham C. Walker9338136875
Christian Meyer93108138149
Muhammad Farooq92134137533
Jean Willy Andre Cleymans9054227685
Bernhard T. Baune9060850706
Martin Wikelski8942025821
Niklas Luhmann8542142743
Achim Müller8592635874
Oliver T. Wolf8333724211
Network Information
Related Institutions (5)
University of Tübingen
84.1K papers, 3M citations

94% related

University of Bonn
86.4K papers, 3.1M citations

94% related

ETH Zurich
122.4K papers, 5.1M citations

93% related

Ludwig Maximilian University of Munich
161.5K papers, 5.7M citations

92% related

Max Planck Society
406.2K papers, 19.5M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023150
2022511
20211,696
20201,655
20191,410
20181,299