scispace - formally typeset
Search or ask a question
Institution

Bielefeld University

EducationBielefeld, Nordrhein-Westfalen, Germany
About: Bielefeld University is a education organization based out in Bielefeld, Nordrhein-Westfalen, Germany. It is known for research contribution in the topics: Population & Quantum chromodynamics. The organization has 10123 authors who have published 26576 publications receiving 728250 citations. The organization is also known as: University of Bielefeld & UNIVERSITAET BIELEFELD.


Papers
More filters
Journal ArticleDOI
Haidong Wang1, Timothy M. Wolock1, Austin Carter1, Grant Nguyen1  +497 moreInstitutions (214)
TL;DR: This report provides national estimates of levels and trends of HIV/AIDS incidence, prevalence, coverage of antiretroviral therapy (ART), and mortality for 195 countries and territories from 1980 to 2015.

522 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe how thermalization occurs in heavy ion collisions in the framework of perturbative QCD when the saturation scale Qs is large compared to ΛQCD.

521 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a simple proof of the strong converse for identification via discrete memoryless quantum channels, based on a novel covering lemma, which involves a development of explicit large deviation estimates to the case of random variables taking values in self-adjoint operators on a Hilbert space.
Abstract: We present a simple proof of the strong converse for identification via discrete memoryless quantum channels, based on a novel covering lemma. The new method is a generalization to quantum communication channels of Ahlswede's (1979, 1992) approach to classical channels. It involves a development of explicit large deviation estimates to the case of random variables taking values in self-adjoint operators on a Hilbert space. This theory is presented separately in an appendix, and we illustrate it by showing its application to quantum generalizations of classical hypergraph covering problems.

520 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present results on the equation of state in QCD with two light quark flavors and a heavier strange quark, and show that the effect of finite cutoff effects is significant for temperatures larger than about twice the transition temperature.
Abstract: We present results on the equation of state in QCD with two light quark flavors and a heavier strange quark. Calculations with improved staggered fermions have been performed on lattices with temporal extent ${N}_{\ensuremath{\tau}}=4$ and 6 on a line of constant physics with almost physical quark mass values; the pion mass is about 220 MeV, and the strange quark mass is adjusted to its physical value. High statistics results on large lattices are obtained for bulk thermodynamic observables, i.e. pressure, energy and entropy density, at vanishing quark chemical potential for a wide range of temperatures, $140\text{ }\text{ }\mathrm{MeV}\ensuremath{\le}T\ensuremath{\le}800\text{ }\text{ }\mathrm{MeV}$. We present a detailed discussion of finite cutoff effects which become particularly significant for temperatures larger than about twice the transition temperature. At these high temperatures we also performed calculations of the trace anomaly on lattices with temporal extent ${N}_{\ensuremath{\tau}}=8$. Furthermore, we have performed an extensive analysis of zero temperature observables including the light and strange quark condensates and the static quark potential at zero temperature. These are used to set the temperature scale for thermodynamic observables and to calculate renormalized observables that are sensitive to deconfinement and chiral symmetry restoration and become order parameters in the infinite and zero quark mass limits, respectively.

519 citations


Authors

Showing all 10375 results

NameH-indexPapersCitations
Stefan Grimme113680105087
Alfred Pühler10265845871
James Barber10264242397
Swagata Mukherjee101104846234
Hans-Joachim Werner9831748508
Krzysztof Redlich9860932693
Graham C. Walker9338136875
Christian Meyer93108138149
Muhammad Farooq92134137533
Jean Willy Andre Cleymans9054227685
Bernhard T. Baune9060850706
Martin Wikelski8942025821
Niklas Luhmann8542142743
Achim Müller8592635874
Oliver T. Wolf8333724211
Network Information
Related Institutions (5)
University of Tübingen
84.1K papers, 3M citations

94% related

University of Bonn
86.4K papers, 3.1M citations

94% related

ETH Zurich
122.4K papers, 5.1M citations

93% related

Ludwig Maximilian University of Munich
161.5K papers, 5.7M citations

92% related

Max Planck Society
406.2K papers, 19.5M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023150
2022511
20211,696
20201,656
20191,410
20181,299