scispace - formally typeset
Search or ask a question
Institution

Bielefeld University

EducationBielefeld, Nordrhein-Westfalen, Germany
About: Bielefeld University is a education organization based out in Bielefeld, Nordrhein-Westfalen, Germany. It is known for research contribution in the topics: Population & Quantum chromodynamics. The organization has 10123 authors who have published 26576 publications receiving 728250 citations. The organization is also known as: University of Bielefeld & UNIVERSITAET BIELEFELD.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the concept of a limit ESS was introduced for two-person games in normal form, and several theorems on the properties of such games were provided for the analysis of specific games.

230 citations

Journal ArticleDOI
TL;DR: For a macroscopic, isolated quantum system in an unknown pure state, the expectation value of any given observable is shown to hardly deviate from the ensemble average with extremely high probability under generic equilibrium and nonequilibrium conditions as mentioned in this paper.
Abstract: For a macroscopic, isolated quantum system in an unknown pure state, the expectation value of any given observable is shown to hardly deviate from the ensemble average with extremely high probability under generic equilibrium and nonequilibrium conditions. Special care is devoted to the uncontrollable microscopic details of the system state. For a subsystem weakly coupled to a large heat bath, the canonical ensemble is recovered under much more general and realistic assumptions than those implicit in the usual microcanonical description of the composite system at equilibrium.

229 citations

Journal ArticleDOI
01 Jan 2010-Science
TL;DR: The template’s role in the self-assembly mechanism is further confirmed by the deliberate addition of the template to the reaction mixture, which greatly accelerates the assembly time of the {Mo150} wheel and increases the yield.
Abstract: Self-assembly has proven a powerful means of preparing structurally intricate nanomaterials, but the mechanism is often masked by the common one-pot mixing procedure. We employed a flow system to study the steps underlying assembly of a previously characterized molybdenum oxide wheel 3.6 nanometers in diameter. We observed crystallization of an intermediate structure in which a central {Mo36} cluster appears to template the assembly of the surrounding {Mo150} wheel. The transient nature of the template is demonstrated by its ejection after the wheel is reduced to its final electronic state. The template’s role in the self-assembly mechanism is further confirmed by the deliberate addition of the template to the reaction mixture, which greatly accelerates the assembly time of the {Mo150} wheel and increases the yield.

228 citations

Journal ArticleDOI
05 Dec 2013-Nature
TL;DR: Evidence is provided supporting a model whereby lipidic constituents of the ligands attached to the receptor surface are handed off to the membrane through the tunnel, accounting for the selective lipid transfer characteristic of SR-BI and CD36.
Abstract: These results reveal the first high-resolution structural analysis of LIMP-2 and, by homology modelling, the structure of SR-BI and CD36, members of the CD36 superfamily of scavenger receptor proteins. Scavenger receptor proteins of the CD36 superfamily regulate lipid metabolism and innate immunity. They recognize normal and modified lipoproteins and pathogen-associated molecular patterns. In this study, Sergio Grinstein and colleagues present the first high-resolution structural analysis of the CD36 family protein LIMP-2 (lysosomal integral membrane protein type 2), and by homology modelling, the structure of the other two superfamily members, SR-BI and CD36. The structure reveals the existence of a large cavity that traverses the entire length of the molecule; it may serve as a tunnel through which cholesterol is delivered from the bound lipoprotein to the outer leaflet of the plasma membrane. Members of the CD36 superfamily of scavenger receptor proteins are important regulators of lipid metabolism and innate immunity. They recognize normal and modified lipoproteins, as well as pathogen-associated molecular patterns. The family consists of three members: SR-BI (which delivers cholesterol to the liver and steroidogenic organs and is a co-receptor for hepatitis C virus), LIMP-2/LGP85 (which mediates lysosomal delivery of β-glucocerebrosidase and serves as a receptor for enterovirus 71 and coxsackieviruses) and CD36 (a fatty-acid transporter and receptor for phagocytosis of effete cells and Plasmodium-infected erythrocytes). Notably, CD36 is also a receptor for modified lipoproteins and β-amyloid, and has been implicated in the pathogenesis of atherosclerosis and of Alzheimer’s disease1. Despite their prominent roles in health and disease, understanding the function and abnormalities of the CD36 family members has been hampered by the paucity of information about their structure. Here we determine the crystal structure of LIMP-2 and infer, by homology modelling, the structure of SR-BI and CD36. LIMP-2 shows a helical bundle where β-glucocerebrosidase binds, and where ligands are most likely to bind to SR-BI and CD36. Remarkably, the crystal structure also shows the existence of a large cavity that traverses the entire length of the molecule. Mutagenesis of SR-BI indicates that the cavity serves as a tunnel through which cholesterol(esters) are delivered from the bound lipoprotein to the outer leaflet of the plasma membrane. We provide evidence supporting a model2 whereby lipidic constituents of the ligands attached to the receptor surface are handed off to the membrane through the tunnel, accounting for the selective lipid transfer characteristic of SR-BI and CD36.

228 citations

Journal ArticleDOI
TL;DR: It is proposed that this characteristic of femtosecond optical excitation of half-metals enables the establishment of a novel and fast characterization tool for this highly important material class used in spin-electronic devices.
Abstract: Knowledge of the spin polarization is of fundamental importance for the use of a material in spintronics applications. Here, we used femtosecond optical excitation of half-metals to distinguish between half-metallic and metallic properties. Because the direct energy transfer by Elliot-Yafet scattering is blocked in a half-metal, the demagnetization time is a measure for the degree of half-metallicity. We propose that this characteristic enables us vice versa to establish a novel and fast characterization tool for this highly important material class used in spin-electronic devices. The technique has been applied to a variety of materials where the spin polarization at the Fermi level ranges from 45 to 98%: Ni, Co(2)MnSi, Fe(3)O(4), La(0.66)Sr(0.33)MnO(3) and CrO(2).

228 citations


Authors

Showing all 10375 results

NameH-indexPapersCitations
Stefan Grimme113680105087
Alfred Pühler10265845871
James Barber10264242397
Swagata Mukherjee101104846234
Hans-Joachim Werner9831748508
Krzysztof Redlich9860932693
Graham C. Walker9338136875
Christian Meyer93108138149
Muhammad Farooq92134137533
Jean Willy Andre Cleymans9054227685
Bernhard T. Baune9060850706
Martin Wikelski8942025821
Niklas Luhmann8542142743
Achim Müller8592635874
Oliver T. Wolf8333724211
Network Information
Related Institutions (5)
University of Tübingen
84.1K papers, 3M citations

94% related

University of Bonn
86.4K papers, 3.1M citations

94% related

ETH Zurich
122.4K papers, 5.1M citations

93% related

Ludwig Maximilian University of Munich
161.5K papers, 5.7M citations

92% related

Max Planck Society
406.2K papers, 19.5M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023150
2022511
20211,696
20201,655
20191,410
20181,299