scispace - formally typeset
Search or ask a question
Institution

Bielefeld University

EducationBielefeld, Nordrhein-Westfalen, Germany
About: Bielefeld University is a education organization based out in Bielefeld, Nordrhein-Westfalen, Germany. It is known for research contribution in the topics: Population & Quantum chromodynamics. The organization has 10123 authors who have published 26576 publications receiving 728250 citations. The organization is also known as: University of Bielefeld & UNIVERSITAET BIELEFELD.


Papers
More filters
Journal ArticleDOI
TL;DR: It is concluded that the photosynthetic machinery needs high levels of 2-CP during leaf development to protect it from oxidative damage and that the damage is reduced by the accumulation of2-CP protein, by the de novo synthesis and replacement of damaged proteins, and by the induction of other antioxidant defenses in 2- CP mutants.
Abstract: 2-Cysteine peroxiredoxins (2-CPs) constitute a ubiquitous group of peroxidases that reduce cell-toxic alkyl hydroperoxides to their corresponding alcohols. Recently, we cloned 2-CP cDNAs from plants and characterized them as chloroplast proteins. To elucidate the physiological function of the 2-CP in plant metabolism, we generated antisense mutants in Arabidopsis. In the mutant lines a 2-CP deficiency developed during early leaf and plant development and eventually the protein accumulated to wild-type levels. In young mutants with reduced amounts of 2-CP, photosynthesis was impaired and the levels of D1 protein, the light-harvesting protein complex associated with photosystem II, chloroplast ATP synthase, and ribulose-1,5-bisphosphate carboxylase/oxygenase were decreased. Photoinhibition was particularly pronounced after the application of the protein synthesis inhibitor, lincomycin. We concluded that the photosynthetic machinery needs high levels of 2-CP during leaf development to protect it from oxidative damage and that the damage is reduced by the accumulation of 2-CP protein, by the de novo synthesis and replacement of damaged proteins, and by the induction of other antioxidant defenses in 2-CP mutants.

208 citations

Journal ArticleDOI
TL;DR: It was shown that the most abundant species dominating the community also contributed the majority of the transcripts, and a high transcriptional activity of archaeal species was indicated.

208 citations

Journal ArticleDOI
TL;DR: Together, the papers in this special issue provide a timely update on eye movement control that reflects current hot topics in the field, spanning the range from cognitive science over applied psychology to clinical psychology and neuroscience.
Abstract: is well-known that eye movements are central to visual perception [1]. Visual acuity decreases dramatically in the periphery of vision, and precise eye movements to specific locations are vital to foveate objects of interest and identify them with high accuracy [1–4]. Given the importance of eye movements for visual perception, there has been a surge of interest in the topic, with numerous studies being conducted to clarify the variables that determine our eye movements (for a historical review see [5]). In fact, Google Scholar shows that eye movements are discussed in over a million publications, and a Web of Science search reveals 17,000 publications with eye movement in the title or abstract. As shown in Figure 1, the number of publications with eye movement in the title or abstract has also steadily increased over years, culminating in about 200 papers published in 2013. Figure 1 The number of publications with the “eye movement” in the title or abstract, according to a Web of Science search 2014. Despite the surge of interest in eye movements, many questions remain unresolved. This is also reflected in this special issue on eye movement control. First, there are a variety of different eye movements [2, 4]. Among the most widely known eye movements are the fast, ballistic saccades (including superfast express saccades) (e.g., B. de Gelder et al., this issue), smooth-pursuit eye movements (J. N. van der Geest et al., this issue), and vergence eye movements (e.g., P. M. Grove et al., this issue) required to fixate objects at different depths. Less well-known and yet intensely researched are microsaccades, tremor, slow drift, and vestibuloocular and optokinetic eye movements that stabilize gaze during motions of the head and motions of large regions of the image on the retina [2, 4]. Secondly and more importantly for the current special issue, eye movements are also controlled by a variety of different factors [1, 4]. Apart from being subject to diverse muscular and ocular constraints, successful voluntary control over eye movements critically depends on the quality of the visual input, which in turn depends on a variety of internal and external factors [1, 6, 7]. The contributions to the present special issue clarify key elements of both internal and external factors in eye movement control (G. W. Alpers et al., U. Ansorge et al., B. de Gelder et al., P. M. Grove et al., D. R. Hardwick et al., W. E. Huddlestone et al., J. Kassubek et al., A. Khan et al., A. Piras et al., N. D. Smith et al., J. N. van der Geest et al., and D. Venini et al., this issue). In the present contributions, eye movements have also been used to provide new insights into ocular and neurological disorders (J. Kassubek et al., N. D. Smith et al., this issue) and shed new light on the relationship between covert attention and eye movements (e.g., G. W. Alpers et al., U. Ansorge et al., D. R. Hardwick et al., and A. Khan et al., this issue; see also [6–9]). Together, the papers in this special issue provide a timely update on eye movement control that reflects current hot topics in the field, spanning the range from cognitive science over applied psychology to clinical psychology and neuroscience. Stefanie I. Becker Gernot Horstmann Arvid Herwig

208 citations

Journal ArticleDOI
TL;DR: Mutation of PA1396 or addition of DSF to P. aeruginosa led to increased levels of a number of proteins with roles in bacterial stress tolerance, including those implicated in resistance to cationic antimicrobial peptides, suggesting that modulation of bacterial behaviour through DSF‐mediated interspecies signalling with xanthomonads is a phenomenon that occurs widely.
Abstract: Interspecies signalling through the action of diffusible signal molecules can influence the behaviour of organisms growing in polymicrobial communities. Stenotrophomonas maltophilia and Pseudomonas aeruginosa occur ubiquitously in the environment and can be found together in diverse niches including the rhizosphere of plants and the cystic fibrosis lung. In mixed species biofilms, S. maltophilia substantially influenced the architecture of P. aeruginosa structures, which developed as extended filaments. This effect depended upon the synthesis of the diffusible signal factor (DSF) by S. maltophilia and could be mimicked by the addition of synthetic DSF. This response of P. aeruginosa to DSF required PA1396, a sensor kinase with an input domain of related amino acid sequence to the sensory input domain of RpfC, which is responsible for DSF perception in xanthomonads. Mutation of PA1396 or addition of DSF to P. aeruginosa led to increased levels of a number of proteins with roles in bacterial stress tolerance, including those implicated in resistance to cationic antimicrobial peptides. This effect was associated with increased tolerance to polymyxins. Homologues of PA1396 occur in a number of phytopathogenic and plant-associated pseudomonads, suggesting that modulation of bacterial behaviour through DSF-mediated interspecies signalling with xanthomonads is a phenomenon that occurs widely.

208 citations

Journal ArticleDOI
TL;DR: Time resolved magnetization measurements have been performed on a spin 1/2 molecular complex, so-called V15, and spin-phonon coupling leads to long relaxation times and to a particular "butterfly" hysteresis loop.
Abstract: Time resolved magnetization measurements have been performed on a spin 1/2 molecular complex, so-called V15. Despite the absence of a barrier, magnetic hysteresis is observed over a time scale of several seconds. A detailed analysis in terms of a dissipative two-level model is given, in which fluctuations and splittings are of the same energy. Spin-phonon coupling leads to long relaxation times and to a particular "butterfly" hysteresis loop.

207 citations


Authors

Showing all 10375 results

NameH-indexPapersCitations
Stefan Grimme113680105087
Alfred Pühler10265845871
James Barber10264242397
Swagata Mukherjee101104846234
Hans-Joachim Werner9831748508
Krzysztof Redlich9860932693
Graham C. Walker9338136875
Christian Meyer93108138149
Muhammad Farooq92134137533
Jean Willy Andre Cleymans9054227685
Bernhard T. Baune9060850706
Martin Wikelski8942025821
Niklas Luhmann8542142743
Achim Müller8592635874
Oliver T. Wolf8333724211
Network Information
Related Institutions (5)
University of Tübingen
84.1K papers, 3M citations

94% related

University of Bonn
86.4K papers, 3.1M citations

94% related

ETH Zurich
122.4K papers, 5.1M citations

93% related

Ludwig Maximilian University of Munich
161.5K papers, 5.7M citations

92% related

Max Planck Society
406.2K papers, 19.5M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023150
2022511
20211,696
20201,655
20191,410
20181,299