scispace - formally typeset
Search or ask a question
Institution

Boise State University

EducationBoise, Idaho, United States
About: Boise State University is a education organization based out in Boise, Idaho, United States. It is known for research contribution in the topics: Population & Computer science. The organization has 3698 authors who have published 8664 publications receiving 210163 citations. The organization is also known as: BSU & Boise State.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, two geogrid types, with square and triangular-shaped apertures, were used in the laboratory to calibrate an aggregate imaging-based Discrete Element Method (DEM) modeling approach, which is capable of creating actual ballast aggregate particles as three-dimensional polyhedron blocks having the same particle size distributions and imaging quantified average shapes and angularities.

89 citations

Journal ArticleDOI
TL;DR: An inversion of the self-potential signals is proposed that accounts for the heterogeneous nature of the aquifer and a relationship between the electrical resistivity and the streaming current coupling coefficient and is recast into a Bayesian framework.
Abstract: Ground water flow associated with pumping and injection tests generates self-potential signals that can be measured at the ground surface and used to estimate the pattern of ground water flow at depth. We propose an inversion of the self-potential signals that accounts for the heterogeneous nature of the aquifer and a relationship between the electrical resistivity and the streaming current coupling coefficient. We recast the inversion of the self-potential data into a Bayesian framework. Synthetic tests are performed showing the advantage in using self-potential signals in addition to in situ measurements of the potentiometric levels to reconstruct the shape of the water table. This methodology is applied to a new data set from a series of coordinated hydraulic tomography, self-potential, and electrical resistivity tomography experiments performed at the Boise Hydrogeophysical Research Site, Idaho. In particular, we examine one of the dipole hydraulic tests and its reciprocal to show the sensitivity of the self-potential signals to variations of the potentiometric levels under steady-state conditions. However, because of the high pumping rate, the response was also influenced by the Reynolds number, especially near the pumping well for a given test. Ground water flow in the inertial laminar flow regime is responsible for nonlinearity that is not yet accounted for in self-potential tomography. Numerical modeling addresses the sensitivity of the self-potential response to this problem.

89 citations

Journal ArticleDOI
01 Feb 2013-Ecology
TL;DR: The results provide the first evidence for multi-scale habitat selection by an avian herbivore on the basis of phytochemistry, and they suggest that phytochemical may be a fundamental driver of habitat selection for vertebrate herbivores.
Abstract: Animal habitat selection is a process that functions at multiple, hierarchically structured spatial scales. Thus multi-scale analyses should be the basis for inferences about factors driving the habitat selection process. Vertebrate herbivores forage selectively on the basis of phytochemistry, but few studies have investigated the influence of selective foraging (i.e., fine-scale habitat selection) on habitat selection at larger scales. We tested the hypothesis that phytochemistry is integral to the habitat selection process for vertebrate herbivores. We predicted that habitats selected at three spatial scales would be characterized by higher nutrient concentrations and lower concentrations of plant secondary metabolites (PSMs) than unused habitats. We used the Greater Sage-Grouse (Centrocercus urophasianus), an avian herbivore with a seasonally specialized diet of sagebrush, to test our hypothesis. Sage-Grouse selected a habitat type (black sagebrush, Artemisia nova) with lower PSM concentrations than the alternative (Wyoming big sagebrush, A. tridentata wyomingensis). Within black sagebrush habitat, Sage-Grouse selected patches and individual plants within those patches that were higher in nutrient concentrations and lower in PSM concentrations than those not used. Our results provide the first evidence for multi-scale habitat selection by an avian herbivore on the basis of phytochemistry, and they suggest that phytochemistry may be a fundamental driver of habitat selection for vertebrate herbivores.

88 citations

Journal ArticleDOI
TL;DR: Thompson et al. as discussed by the authors examined student and teacher interactions in classroom episodes (warm-ups, small-group conversations, whole-group conversation, etc.) and contribute to a growing body of research that specifies equity in classroom practice.
Abstract: Author(s): Thompson, Jesica; Hagenah, Sara; Kang, Hosun; Stroupe, David; Braaten, Melissa; Colley, Carolyn; Windschitl, Mark | Abstract: Background/Context There are few examples from classrooms or the literature that provide a clear vision of teaching that simultaneously promotes rigorous disciplinary activity and is responsive to all students. Maintaining rigorous and equitable classroom discourse is a worthy goal, yet there is no clear consensus of how this actually works in a classroom. Focus of Study What does highly rigorous and responsive talk sound like and how is this dialogue embedded in the social practices and activities of classrooms? Our aim was to examine student and teacher interactions in classroom episodes (warm-ups, small-group conversations, whole-group conversation, etc.) and contribute to a growing body of research that specifies equity in classroom practice. Research Design This mixed-method study examines differences in discourse within and across classroom episodes (warm-ups, small-group conversations, whole-group conversation, etc.) that elevated, or failed to elevate, students’ explanatory rigor in equitable ways. Data include 222 secondary science lessons (1,174 episodes) from 37 novice teachers. Lessons were videotaped and analyzed for the depth of students’ explanatory talk and the quality of responsive dialogue. Findings The findings support three statistical claims. First, high levels of rigor cannot be attained in classrooms where teachers are unresponsive to students’ ideas or puzzlements. Second, the architecture of a lesson matters. Teachers and students engaging in highly rigorous and responsive lessons turned potentially trivial episodes (such as warm-ups) of science activity into robust learning experiences, connected to other episodes in the same lesson. Third, episodes featuring one or more forms of responsive talk elevated rigor. There were three forms of responsive talk observed in classrooms: building on students’ science ideas, attending to students’ participation in the learning community, and folding in students’ lived experiences. Small but strategic moves within these forms were consequential for supporting rigor. Conclusions/Recommendations This paper challenges the notion that rigor and responsiveness are attributes of curricula or individual teachers. Rigorous curriculum is necessary but not sufficient for ambitious and equitable science learning experiences; the interactions within the classroom are essential for sustaining the highest quality of scientific practice and sense-making. The data supported the development of a framework that articulates incremental differences in supporting students’ explanatory rigor and three dimensions of responsiveness. We describe implications for using this framework in the design of teacher programs and professional development models.

88 citations


Authors

Showing all 3902 results

NameH-indexPapersCitations
Jeffrey G. Andrews11056263334
Zhu Han109140748725
Brian R. Flay8932526390
Jeffrey W. Elam8343524543
Pramod K. Varshney7989430834
Scott Fendorf7924421035
Gregory F. Ball7634221193
Yan Wang72125330710
David C. Dunand7252719212
Juan Carlos Diaz-Velez6433414252
Michael K. Lindell6218619865
Matthew J. Kohn6216413741
Maged Elkashlan6129414736
Bernard Yurke5824217897
Miguel Ferrer5847811560
Network Information
Related Institutions (5)
Arizona State University
109.6K papers, 4.4M citations

92% related

Pennsylvania State University
196.8K papers, 8.3M citations

91% related

University of Texas at Austin
206.2K papers, 9M citations

90% related

Texas A&M University
164.3K papers, 5.7M citations

90% related

University of New Mexico
64.7K papers, 2.5M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202370
2022210
2021763
2020695
2019620
2018637