scispace - formally typeset
Search or ask a question
Institution

Boise State University

EducationBoise, Idaho, United States
About: Boise State University is a education organization based out in Boise, Idaho, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 3698 authors who have published 8664 publications receiving 210163 citations. The organization is also known as: BSU & Boise State.


Papers
More filters
Journal ArticleDOI
TL;DR: The genesis of uncertainty in hydrologic and water quality modeling is explored and strategies for assessing uncertainty in these models on local and global scales when interpreting the model output are provided.
Abstract: . Hydrologic and water quality models (HWQMs) are increasingly used to support decisions on various environmental issues and policy directions for present and future scenarios, at scales varying from watershed to continental levels. Uncertainty associated with such models may affect the ability of the models to accurately evaluate the response of complex systems, leading to misguided assessments and risk management decisions. Current well-known HWQMs contain numerous input parameters, many of which are not known with certainty, and in other cases model users can hardly recognize the genesis of uncertainty. Uncertainty in data, model structure, and model parameters can propagate throughout model runs, causing the model output to substantially deviate from the expected response of the natural system. Various uncertainty assessment methods have been used with different HWQMs, creating concerns about an adequate approach for handling uncertainty in these models and how such an approach can be implemented across various discretization complexities and scales. In this article, our primary intention is to review uncertainty in the currently used HWQMs and to provide guidance and useful information for researchers and investigators. In this regard, we explore the genesis of uncertainty in hydrologic and water quality modeling (i.e., spatiotemporal scales, model representation, model discretization, model parameterization) and provide strategies for assessing uncertainty in hydrologic and water quality modeling on local and global scales when interpreting the model output.

57 citations

Journal ArticleDOI
TL;DR: For instance, this paper found that the types of experiences participants had in teaching roles at the time of their college audition, supporting other research suggesting that such experiences may increase interest in a music teaching career.
Abstract: The purpose of this pilot study was to survey prospective undergraduate music education majors to learn what motivated them to aspire to a career in music education. Respondents were candidates auditioning, but not yet accepted, for music teacher preparation programs at four institutions (N = 228). Findings corroborate prior research that suggests that school music teachers and/or private lesson teachers are highly influential. This study sought to quantify the types of experiences participants had in teaching roles at the time of their college audition, supporting other research suggesting that such experiences may increase interest in a music teaching career. Recommendations include engaging music educators at all PreK—12 levels in actively recruiting and encouraging future teachers, providing private instructors and performance majors with teacher recruitment information, emphasizing earlier identification and preparation of prospective educators, and refining and continuing the work begun in this pilo...

57 citations

Journal ArticleDOI
TL;DR: Observations indicate that the improved dispersion stability leads to increased NP bioavailability for suspension cell models and reduced NP sedimentation onto adherent cell layers resulting in more accurate in vitro toxicity assessments.
Abstract: Agglomeration and sedimentation of nanoparticles (NPs) within biological solutions is a major limitation in their use in many downstream applications. It has been proposed that serum proteins associate with the NP surface to form a protein corona that limits agglomeration and sedimentation. Here, we investigate the effect of fetal bovine serum (FBS) proteins on the dispersion stability, dosimetry, and NP-induced cytotoxicity of cationic zinc oxide nanoparticles (nZnO) synthesized via forced hydrolysis with a core size of 10 nm. Two different in vitro cell culture models, suspension and adherent, were evaluated by comparing a phosphate buffered saline (PBS) nZnO dispersion (nZnO/PBS) and an FBS-stabilized PBS nZnO dispersion (nZnO – FBS/PBS). Surface interactions of FBS on nZnO were analyzed via spectroscopic and optical techniques. Fourier transformed infrared spectroscopy (FTIR) confirmed the adsorption of negatively charged protein components on the cationic nZnO surface through the disappearance of surfaced-adsorbed carboxyl functional groups and the subsequent detection of vibrational modes associated with the protein backbone of FBS-associated proteins. Further confirmation of these interactions was noted in the isoelectric point shift of the nZnO from the characteristic pH of 9.5 to a pH of 6.1. In nZnO – FBS/PBS dispersions, the FBS reduced agglomeration and sedimentation behaviors to impart long-term improvements (>24 h) to the nZnO dispersion stability. Furthermore, mathematical dosimetry models indicate that nZnO – FBS/PBS dispersions had consistent NP deposition patterns over time unlike unstable nZnO/PBS dispersions. In suspension cell models, the stable nZnO – FBS/PBS dispersion resulted in a ~33 % increase in the NP-induced cytotoxicity for both Jurkat leukemic and Hut-78 lymphoma cancer cells. In contrast, the nZnO – FBS/PBS dispersion resulted in 49 and 71 % reductions in the cytotoxicity observed towards the adherent breast (T-47D) and prostate (LNCaP) cancer cell lines, respectively. Presence of FBS in the NP dispersions also increased the reactive oxygen species generation. These observations indicate that the improved dispersion stability leads to increased NP bioavailability for suspension cell models and reduced NP sedimentation onto adherent cell layers resulting in more accurate in vitro toxicity assessments.

57 citations

Journal ArticleDOI
01 Nov 2019-Geology
TL;DR: In this article, the authors conducted laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) and chemical abrasion-thermal ionization mass spectrometric (CA-TIMS) of detrital zircon in forearc strata of southern Alaska (USA) to assess the accuracy of several MDA approaches.
Abstract: Uranium-lead (U-Pb) geochronology studies commonly employ the law of detrital zircon: A sedimentary rock cannot be older than its youngest zircon. This premise permits maximum depositional ages (MDAs) to be applied in chronostratigraphy, but geochronologic dates are complicated by uncertainty. We conducted laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) and chemical abrasion–thermal ionization mass spectrometry (CA-TIMS) of detrital zircon in forearc strata of southern Alaska (USA) to assess the accuracy of several MDA approaches. Six samples from Middle–Upper Jurassic units are generally replete with youthful zircon and underwent three rounds of analysis: (1) LA-ICP-MS of ∼115 grains, with one date per zircon; (2) LA-ICP-MS of the ∼15 youngest grains identified in round 1, acquiring two additional dates per zircon; and (3) CA-TIMS of the ∼5 youngest grains identified by LA-ICP-MS. The youngest single-grain LA-ICP-MS dates are all younger than—and rarely overlap at 2σ uncertainty with—the CA-TIMS MDAs. The youngest kernel density estimation modes are typically several million years older than the CA-TIMS MDAs. Weighted means of round 1 dates that define the youngest statistical populations yield the best coincidence with CA-TIMS MDAs. CA-TIMS dating of the youngest zircon identified by LA-ICP-MS is indispensable for critical MDA applications, eliminating laser-induced matrix effects, mitigating and evaluating Pb loss, and resolving complexities of interpreting lower-precision, normally distributed LA-ICP-MS dates. Finally, numerous CA-TIMS MDAs in this study are younger than Bathonian(?)–Callovian and Oxfordian faunal correlations suggest, highlighting the need for additional radioisotopic constraints—including CA-TIMS MDAs—for the Middle–Late Jurassic geologic time scale.

57 citations

Journal ArticleDOI
TL;DR: In this paper, two approaches to improving the classification accuracy of predictors of grade 3 reading performance are compared and the results indicate that the reliance on single screening measures do not result in high levels of classification accuracy.
Abstract: In a response-to-intervention framework, schools typically employ a direct route approach to screening, in which students identified as at risk by a screening process are directly placed into intervention. Direct route approaches require screening decisions to be highly accurate, but few studies examining the predictive validity of reading measures report achieving recommendations for classification accuracy. In this study, two approaches to improving the classification accuracy of predictors of Grade 3 reading performance are compared. Findings indicate that the reliance on single screening measures do not result in high levels of classification accuracy. Classification accuracy improved by 2% when a combination of measures was employed and by 6% when a predicted probability risk index was used. Implications for research and practice are discussed.

57 citations


Authors

Showing all 3902 results

NameH-indexPapersCitations
Jeffrey G. Andrews11056263334
Zhu Han109140748725
Brian R. Flay8932526390
Jeffrey W. Elam8343524543
Pramod K. Varshney7989430834
Scott Fendorf7924421035
Gregory F. Ball7634221193
Yan Wang72125330710
David C. Dunand7252719212
Juan Carlos Diaz-Velez6433414252
Michael K. Lindell6218619865
Matthew J. Kohn6216413741
Maged Elkashlan6129414736
Bernard Yurke5824217897
Miguel Ferrer5847811560
Network Information
Related Institutions (5)
Arizona State University
109.6K papers, 4.4M citations

92% related

Pennsylvania State University
196.8K papers, 8.3M citations

91% related

University of Texas at Austin
206.2K papers, 9M citations

90% related

Texas A&M University
164.3K papers, 5.7M citations

90% related

University of New Mexico
64.7K papers, 2.5M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202370
2022210
2021763
2020695
2019620
2018637