scispace - formally typeset
Search or ask a question
Institution

Boise State University

EducationBoise, Idaho, United States
About: Boise State University is a education organization based out in Boise, Idaho, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 3698 authors who have published 8664 publications receiving 210163 citations. The organization is also known as: BSU & Boise State.


Papers
More filters
Journal Article
TL;DR: Budge et al. as mentioned in this paper discussed the problem of rural leaders, privilege, and possibility in rural education, and proposed a framework for rural leaders to solve it. But their work was limited to three categories: Problem, Privilege, and Possibility.
Abstract: Correspondence concerning this article should be addressed to Kathleen Budge, Boise State University, Leadership Development Program, Boise, ID 83706. (kathleenbudge@boisestate.edu) Citation: Budge, K. (2006, December 18). Rural leaders, rural places: Problem, privilege, and possibility. Journal of Research in Rural Education, 21(13). Retrieved [date] from http://jrre.psu.edu/articles/2113.pdf Rural Leaders, Rural Places: Problem, Privilege, and Possibility

163 citations

Journal ArticleDOI
TL;DR: It is shown that although open-habitat grasses existed in southern South America since the middle Eocene, they were minor floral components in overall forested habitats between 40 and 18 Myr ago, and distinctly different, continent-specific environmental conditions (arid grasslands versus ash-laden forests) triggered convergent cheek-tooth evolution in Cenozoic herbivores.
Abstract: The evolution of high-crowned cheek teeth (hypsodonty) in herbivorous mammals during the late Cenozoic is classically regarded as an adaptive response to the near-global spread of grass-dominated habitats. Precocious hypsodonty in middle Eocene (B38 million years (Myr) ago) faunas from Patagonia, South America, is therefore thought to signal Earth’s first grasslands, 20 million years earlier than elsewhere. Here, using a high-resolution, 43–18 million-year record of plant silica (phytoliths) from Patagonia, we show that although open-habitat grasses existed in southern South America since the middle Eocene (B40 Myr ago), they were minor floral components in overall forested habitats between 40 and 18 Myr ago. Thus, distinctly different, continent-specific environmental conditions (arid grasslands versus ash-laden forests) triggered convergent cheek–tooth evolution in Cenozoic herbivores. Hypsodonty evolution is an important example where the present is an insufficient key to the past, and contextual information from fossils is vital for understanding processes of adaptation.

162 citations

Journal ArticleDOI
Lawrence N. Hudson1, Tim Newbold2, Tim Newbold3, Sara Contu1  +570 moreInstitutions (291)
TL;DR: The PREDICTS project as discussed by the authors provides a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use.
Abstract: The PREDICTS project—Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)—has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make freely available this 2016 release of the database, containing more than 3.2 million records sampled at over 26,000 locations and representing over 47,000 species. We outline how the database can help in answering a range of questions in ecology and conservation biology. To our knowledge, this is the largest and most geographically and taxonomically representative database of spatial comparisons of biodiversity that has been collated to date; it will be useful to researchers and international efforts wishing to model and understand the global status of biodiversity.

162 citations

Journal ArticleDOI
TL;DR: The American Society for Engineering Education (ASEE) annual conference proceedings (1996-1999) contain 42 papers that treat engineering ethics as a coherent educational objective as discussed by the authors, including a discussion of where ethics is being taught (from both a chronological, and disciplinary perspective), and six pedagogical approaches used to transfer an understanding of ethics to the student.
Abstract: What are the objectives of engineering ethics? How is it being taught and how might instruction be more effective? The American Society for Engineering Education (ASEE) annual conference proceedings (1996–1999) contain 42 papers that treat engineering ethics as a coherent educational objective. Some of these papers disclose small components that seem to be part of a larger ethics curriculum. Other papers discuss engineering courses that are clearly the department's major ethics commitment. While it would be inappropriate to assume that the 42 papers represent the only means by which engineering students receive ethics instruction, these papers do present a variety of more-or-less defensible approaches and certainly the major intentional approaches of engineering curricula. This paper will develop an analysis of the 42 articles, including a discussion of where ethics is being taught (from both a chronological, and disciplinary perspective), and the six pedagogical approaches used to transfer an understanding of ethics to the student. These approaches include professional codes, humanist readings, theoretical grounding, ethical heuristics, case studies, and service learning. These six approaches will also be analyzed in terms of their promise to develop the ethical competencies needed by engineers.

160 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a catchment comparison exercise to evaluate the value of viewing catchments from the storage perspective, based on existing data from five watersheds, no common experimental design, and no integrated modelling efforts.
Abstract: The volume of water stored within a catchment, and its partitioning among groundwater, soil moisture, snowpack, vegetation, and surface water are the variables that ultimately characterize the state of the hydrologic system. Accordingly, storage may provide useful metrics for catchment comparison. Unfortunately, measuring and predicting the amount of water present in a catchment is seldom done; tracking the dynamics of these stores is even rarer. Storage moderates fluxes and exerts critical controls on a wide range of hydrologic and biologic functions of a catchment. While understanding runoff generation and other processes by which catchments release water will always be central to hydrologic science, it is equally essential to understand how catchments retain water. We have initiated a catchment comparison exercise to begin assessing the value of viewing catchments from the storage perspective. The exercise is based on existing data from five watersheds, no common experimental design, and no integrated modelling efforts. Rather, storage was estimated independently for each site. This briefing presents some initial results of the exercise, poses questions about the definitions and importance of storage and the storage perspective, and suggests future directions for ongoing activities. Copyright. (C) 2011 John Wiley & Sons, Ltd.

160 citations


Authors

Showing all 3902 results

NameH-indexPapersCitations
Jeffrey G. Andrews11056263334
Zhu Han109140748725
Brian R. Flay8932526390
Jeffrey W. Elam8343524543
Pramod K. Varshney7989430834
Scott Fendorf7924421035
Gregory F. Ball7634221193
Yan Wang72125330710
David C. Dunand7252719212
Juan Carlos Diaz-Velez6433414252
Michael K. Lindell6218619865
Matthew J. Kohn6216413741
Maged Elkashlan6129414736
Bernard Yurke5824217897
Miguel Ferrer5847811560
Network Information
Related Institutions (5)
Arizona State University
109.6K papers, 4.4M citations

92% related

Pennsylvania State University
196.8K papers, 8.3M citations

91% related

University of Texas at Austin
206.2K papers, 9M citations

90% related

Texas A&M University
164.3K papers, 5.7M citations

90% related

University of New Mexico
64.7K papers, 2.5M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202370
2022210
2021763
2020695
2019620
2018637