scispace - formally typeset
Search or ask a question
Institution

Boston Children's Hospital

HealthcareBoston, Massachusetts, United States
About: Boston Children's Hospital is a healthcare organization based out in Boston, Massachusetts, United States. It is known for research contribution in the topics: Population & Transplantation. The organization has 165409 authors who have published 215589 publications receiving 6885627 citations.


Papers
More filters
Journal Article
TL;DR: Microsatellite and methylation analyses of the pedigree in the following report show that, among three children, the two with autism or atypical autism have maternal inheritance of a 15q11-q13 duplication whereas the third child, who is unaffected, did not inherit this duplication.
Abstract: Duplications of proximal 15q have been found in individuals with autistic disorder (AD) and varying degrees of mental retardation Often these abnormalities take the form of a supernumerary inverted duplicated chromosome 15, more properly described as an isodicentric chromosome 15, or idic(15) However, intrachromosomal duplications also have been reported In a few cases, unaffected mothers, as well as their affected children, carry the same duplications During the course of the genotyping of trios of affected probands with AD and their parents, at the positional candidate locus D15S122, an intrachromosomal duplication of proximal 15q was detected by microsatellite analysis in a phenotypically normal mother Microsatellite and methylation analyses of the pedigree in the following report show that, among three children, the two with autism or atypical autism have maternal inheritance of a 15q11-q13 duplication whereas the third child, who is unaffected, did not inherit this duplication Their mother's 15q11-q13 duplication arose de novo from her father's chromosomes 15 This finding documents, for the first time, the significance of parental origin for duplications of 15q11-q13 In this family, paternal inheritance leads to a normal phenotype, and maternal inheritance leads to autism or atypical autism

623 citations

Journal ArticleDOI
28 May 1998-Nature
TL;DR: The characterization of a regulatory NMDAR subunit, NR3A, is reported, which is expressed primarily during brain development and suggested to be involved in the development of synaptic elements by modulating N MDAR activity.
Abstract: The NMDA (N -methyl-D-aspartate) subclass of glutamate receptor1 is essential for the synaptic plasticity thought to underlie learning and memory2,3,4 and for synaptic refinement during development5,6. It is currently believed that the NMDA receptor (NMDAR) is a heteromultimeric channel comprising the ubiquitous NR1 subunit and at least one regionally localized NR2 subunit7,8,9,10,11. Here we report the characterization of a regulatory NMDAR subunit, NR3A (formerly termed NMDAR-L or χ-1), which is expressed primarily during brain development12,13. NR3Aco-immunoprecipitates with receptor subunits NR1 and NR2 in cerebrocortical extracts. In single-channel recordings from Xenopus oocytes, addition of NR3A to NR1 and NR2 leads to the appearance of a smaller unitary conductance. Genetic knockout of NR3A in mice results in enhanced NMDA responses and increased dendritic spines in early postnatal cerebrocortical neurons. These data suggest that NR3A is involved in the development of synaptic elements by modulating NMDAR activity.

623 citations

Journal ArticleDOI
25 Sep 2008-Neuron
TL;DR: Interestingly, many components of the activity-dependent gene expression program are mutated in human cognitive disorders, which suggest that this program is essential for proper brain development and function.

623 citations

Journal ArticleDOI
TL;DR: The mechanism by which cells perform mechanochemical transduction and the implications of these findings for morphogenetic control are discussed in the wider context of vascular development and cardiovascular physiology.
Abstract: Great advances have been made in the identification of the soluble angiogenic factors, insoluble extracellular matrix (ECM) molecules, and receptor signaling pathways that mediate control of angiogenesis--the growth of blood capillaries. This review focuses on work that explores how endothelial cells integrate these chemical signals with mechanical cues from their local tissue microenvironment so as to produce functional capillary networks that exhibit specialized form as well as function. These studies have revealed that ECM governs whether an endothelial cell will switch between growth, differentiation, motility, or apoptosis programs in response to a soluble stimulus based on its ability to mechanically resist cell tractional forces and thereby produce cell and cytoskeletal distortion. Transmembrane integrin receptors play a key role in this mechanochemical transduction process because they both organize a cytoskeletal signaling complex within the focal adhesion and preferentially focus mechanical forces on this site. Molecular filaments within the internal cytoskeleton--microfilaments, microtubules, and intermediate filaments--also contribute to the cell's structural and functional response to mechanical stress through their role as discrete support elements within a tensegrity-stabilized cytoskeletal array. Importantly, a similar form of mechanical control also has been shown to be involved in the regulation of contractility in vascular smooth muscle cells and cardiac myocytes. Thus, the mechanism by which cells perform mechanochemical transduction and the implications of these findings for morphogenetic control are discussed in the wider context of vascular development and cardiovascular physiology.

623 citations

Journal ArticleDOI
TL;DR: The results provide an objective basis for staging hemangiomas and may be used to evaluate pharmacological agents, such as corticosteroids and interferon alfa-2a, which accelerate regression of hemang iomas.
Abstract: Hemangiomas, localized tumors of blood vessels, appear in approximately 10-12% of Caucasian infants. These lesions are characterized by a rapid proliferation of capillaries for the first year (proliferating phase), followed by slow, inevitable, regression of the tumor over the ensuing 1-5 yr (involuting phase), and continual improvement until 6-12 yr of age (involuted phase). To delineate the clinically observed growth phases of hemangiomas at a cellular level, we undertook an immunohistochemical analysis using nine independent markers. The proliferating phase was defined by high expression of proliferating cell nuclear antigen, type IV collagenase, and vascular endothelial growth factor. Elevated expression of the tissue inhibitor of metalloproteinase, TIMP 1, an inhibitor of new blood vessel formation, was observed exclusively in the involuting phase. High expression of basic fibroblast growth factor (bFGF) and urokinase was present in the proliferating and involuting phases. There was coexpression of bFGF and endothelial phenotypic markers CD31 and von Willebrand factor in the proliferating phase. These results provide an objective basis for staging hemangiomas and may be used to evaluate pharmacological agents, such as corticosteroids and interferon alfa-2a, which accelerate regression of hemangiomas. By contrast, vascular malformations do not express proliferating cell nuclear antigen, vascular endothelial growth factor, bFGF, type IV collagenase, and urokinase. These data demonstrate immunohistochemical differences between proliferating hemangiomas and vascular malformations which reflect the biological distinctions between these vascular lesions.

623 citations


Authors

Showing all 165661 results

NameH-indexPapersCitations
Walter C. Willett3342399413322
Frederick E. Shelton3271485295883
Robert Langer2812324326306
Graham A. Colditz2611542256034
Frank B. Hu2501675253464
George M. Whitesides2401739269833
Eugene Braunwald2301711264576
Ralph B. D'Agostino2261287229636
Mark J. Daly204763304452
Eric B. Rimm196988147119
Virginia M.-Y. Lee194993148820
Bernard Rosner1901162147661
Stuart H. Orkin186715112182
Mark Hallett1861170123741
Ralph Weissleder1841160142508
Network Information
Related Institutions (5)
Baylor College of Medicine
94.8K papers, 5M citations

94% related

University of Texas Health Science Center at Houston
42.5K papers, 2.1M citations

93% related

Mayo Clinic
169.5K papers, 8.1M citations

93% related

University of Colorado Denver
57.2K papers, 2.5M citations

93% related

Icahn School of Medicine at Mount Sinai
76K papers, 3.7M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202380
2022442
202119,543
202016,558
201913,868
201812,020