scispace - formally typeset
Search or ask a question
Institution

Boston Children's Hospital

HealthcareBoston, Massachusetts, United States
About: Boston Children's Hospital is a healthcare organization based out in Boston, Massachusetts, United States. It is known for research contribution in the topics: Population & Transplantation. The organization has 165409 authors who have published 215589 publications receiving 6885627 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Data indicate that peripheral insulin resistance, increased fatty acid beta oxidation, and hepatic oxidative stress are present in both fatty liver and NASH, but NASH alone is associated with mitochondrial structural defects.

1,938 citations

Journal ArticleDOI
23 Sep 1999-Nature
TL;DR: Results suggest that the transplantation of different stem cell populations, using the procedures of bone marrow transplantation, might provide an unanticipated avenue for treating muscular dystrophy as well as other diseases where the systemic delivery of therapeutic cells to sites throughout the body is critical.
Abstract: The development of cell or gene therapies for diseases involving cells that are widely distributed throughout the body has been severely hampered by the inability to achieve the disseminated delivery of cells or genes to the affected tissues or organ. Here we report the results of bone marrow transplantation studies in the mdx mouse, an animal model of Duchenne's muscular dystrophy, which indicate that the intravenous injection of either normal haematopoietic stem cells or a novel population of muscle-derived stem cells into irradiated animals results in the reconstitution of the haematopoietic compartment of the transplanted recipients, the incorporation of donor-derived nuclei into muscle, and the partial restoration of dystrophin expression in the affected muscle. These results suggest that the transplantation of different stem cell populations, using the procedures of bone marrow transplantation, might provide an unanticipated avenue for treating muscular dystrophy as well as other diseases where the systemic delivery of therapeutic cells to sites throughout the body is critical. Our studies also suggest that the inherent developmental potential of stem cells isolated from diverse tissues or organs may be more similar than previously anticipated.

1,937 citations

Journal ArticleDOI
TL;DR: It is concluded that there are probably many common variants in the human genome with modest but real effects on common disease risk, and that studies using large samples will convincingly identify such variants.
Abstract: Association studies offer a potentially powerful approach to identify genetic variants that influence susceptibility to common disease1,2,3,4, but are plagued by the impression that they are not consistently reproducible5,6. In principle, the inconsistency may be due to false positive studies, false negative studies or true variability in association among different populations4,5,6,7,8. The critical question is whether false positives overwhelmingly explain the inconsistency. We analyzed 301 published studies covering 25 different reported associations. There was a large excess of studies replicating the first positive reports, inconsistent with the hypothesis of no true positive associations (P < 10−14). This excess of replications could not be reasonably explained by publication bias and was concentrated among 11 of the 25 associations. For 8 of these 11 associations, pooled analysis of follow-up studies yielded statistically significant replication of the first report, with modest estimated genetic effects. Thus, a sizable fraction (but under half) of reported associations have strong evidence of replication; for these, false negative, underpowered studies probably contribute to inconsistent replication. We conclude that there are probably many common variants in the human genome with modest but real effects on common disease risk, and that studies using large samples will convincingly identify such variants.

1,928 citations

Journal ArticleDOI
Carly G. K. Ziegler, Samuel J. Allon, Sarah K. Nyquist, Ian M. Mbano1, Vincent N. Miao, Constantine N. Tzouanas, Yuming Cao2, Ashraf S. Yousif3, Julia Bals3, Blake M. Hauser3, Blake M. Hauser4, Jared Feldman3, Jared Feldman4, Christoph Muus4, Christoph Muus5, Marc H. Wadsworth, Samuel W. Kazer, Travis K. Hughes, Benjamin Doran, G. James Gatter3, G. James Gatter6, G. James Gatter5, Marko Vukovic, Faith Taliaferro7, Faith Taliaferro5, Benjamin E. Mead, Zhiru Guo2, Jennifer P. Wang2, Delphine Gras8, Magali Plaisant9, Meshal Ansari, Ilias Angelidis, Heiko Adler, Jennifer M.S. Sucre10, Chase J. Taylor10, Brian M. Lin4, Avinash Waghray4, Vanessa Mitsialis11, Vanessa Mitsialis7, Daniel F. Dwyer11, Kathleen M. Buchheit11, Joshua A. Boyce11, Nora A. Barrett11, Tanya M. Laidlaw11, Shaina L. Carroll12, Lucrezia Colonna13, Victor Tkachev4, Victor Tkachev7, Christopher W. Peterson14, Christopher W. Peterson13, Alison Yu7, Alison Yu15, Hengqi Betty Zheng15, Hengqi Betty Zheng13, Hannah P. Gideon16, Caylin G. Winchell16, Philana Ling Lin16, Philana Ling Lin7, Colin D. Bingle17, Scott B. Snapper11, Scott B. Snapper7, Jonathan A. Kropski18, Jonathan A. Kropski10, Fabian J. Theis, Herbert B. Schiller, Laure-Emmanuelle Zaragosi9, Pascal Barbry9, Alasdair Leslie19, Alasdair Leslie1, Hans-Peter Kiem14, Hans-Peter Kiem13, JoAnne L. Flynn16, Sarah M. Fortune4, Sarah M. Fortune3, Sarah M. Fortune5, Bonnie Berger6, Robert W. Finberg2, Leslie S. Kean7, Leslie S. Kean4, Manuel Garber2, Aaron G. Schmidt4, Aaron G. Schmidt3, Daniel Lingwood3, Alex K. Shalek, Jose Ordovas-Montanes, Nicholas E. Banovich, Alvis Brazma, Tushar J. Desai, Thu Elizabeth Duong, Oliver Eickelberg, Christine S. Falk, Michael Farzan20, Ian A. Glass, Muzlifah Haniffa, Peter Horvath, Deborah T. Hung, Naftali Kaminski, Mark A. Krasnow, Malte Kühnemund, Robert Lafyatis, Haeock Lee, Sylvie Leroy, Sten Linnarson, Joakim Lundeberg, Kerstin B. Meyer, Alexander V. Misharin, Martijn C. Nawijn, Marko Nikolic, Dana Pe'er, Joseph E. Powell, Stephen R. Quake, Jay Rajagopal, Purushothama Rao Tata, Emma L. Rawlins, Aviv Regev, Paul A. Reyfman, Mauricio Rojas, Orit Rosen, Kourosh Saeb-Parsy, Christos Samakovlis, Herbert B. Schiller, Joachim L. Schultze, Max A. Seibold, Douglas P. Shepherd, Jason R. Spence, Avrum Spira, Xin Sun, Sarah A. Teichmann, Fabian J. Theis, Alexander M. Tsankov, Maarten van den Berge, Michael von Papen, Jeffrey A. Whitsett, Ramnik J. Xavier, Yan Xu, Kun Zhang 
28 May 2020-Cell
TL;DR: The data suggest that SARS-CoV-2 could exploit species-specific interferon-driven upregulation of ACE2, a tissue-protective mediator during lung injury, to enhance infection.

1,911 citations


Authors

Showing all 165661 results

NameH-indexPapersCitations
Walter C. Willett3342399413322
Frederick E. Shelton3271485295883
Robert Langer2812324326306
Graham A. Colditz2611542256034
Frank B. Hu2501675253464
George M. Whitesides2401739269833
Eugene Braunwald2301711264576
Ralph B. D'Agostino2261287229636
Mark J. Daly204763304452
Eric B. Rimm196988147119
Virginia M.-Y. Lee194993148820
Bernard Rosner1901162147661
Stuart H. Orkin186715112182
Mark Hallett1861170123741
Ralph Weissleder1841160142508
Network Information
Related Institutions (5)
Baylor College of Medicine
94.8K papers, 5M citations

94% related

University of Texas Health Science Center at Houston
42.5K papers, 2.1M citations

93% related

Mayo Clinic
169.5K papers, 8.1M citations

93% related

University of Colorado Denver
57.2K papers, 2.5M citations

93% related

Icahn School of Medicine at Mount Sinai
76K papers, 3.7M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202380
2022442
202119,543
202016,558
201913,868
201812,020