scispace - formally typeset
Search or ask a question
Institution

Boston Children's Hospital

HealthcareBoston, Massachusetts, United States
About: Boston Children's Hospital is a healthcare organization based out in Boston, Massachusetts, United States. It is known for research contribution in the topics: Population & Transplantation. The organization has 165409 authors who have published 215589 publications receiving 6885627 citations.


Papers
More filters
Journal ArticleDOI
15 Oct 2004-Cell
TL;DR: This article showed that activation of NF-kappaB, through muscle-specific transgenic expression of activated IkappaB kinase beta (MIKK), causes profound muscle wasting that resembles clinical cachexia.

1,172 citations

Journal ArticleDOI
TL;DR: Current models of the mechanisms that cause copy number variation focus on perturbation of DNA replication and replication of non-contiguous DNA segments and cellular stress might induce repair of broken replication forks to switch from high-fidelity homologous recombination to non-homologous repair, thus promoting copy number change.
Abstract: Deletions and duplications of chromosomal segments (copy number variants, CNVs) are a major source of variation between individual humans and are an underlying factor in human evolution and in many diseases, including mental illness, developmental disorders and cancer CNVs form at a faster rate than other types of mutation, and seem to do so by similar mechanisms in bacteria, yeast and humans Here we review current models of the mechanisms that cause copy number variation Non-homologous end-joining mechanisms are well known, but recent models focus on perturbation of DNA replication and replication of non-contiguous DNA segments For example, cellular stress might induce repair of broken replication forks to switch from high-fidelity homologous recombination to non-homologous repair, thus promoting copy number change

1,169 citations

Journal ArticleDOI
06 Feb 2020-Cell
TL;DR: The largest exome sequencing study of autism spectrum disorder (ASD) to date, using an enhanced analytical framework to integrate de novo and case-control rare variation, identifies 102 risk genes at a false discovery rate of 0.1 or less, consistent with multiple paths to an excitatory-inhibitory imbalance underlying ASD.

1,169 citations

Journal ArticleDOI
TL;DR: The robust, consistent and inducible nature of the ChR2 mice represents a significant advance over previous lines, and the Arch-ER2 and eNpHR3.0 mice are to the authors' knowledge the first demonstration of successful conditional transgenic optogenetic silencing.
Abstract: Cell type-specific expression of optogenetic molecules allows temporally precise manipulation of targeted neuronal activity. Here we present a toolbox of four knock-in mouse lines engineered for strong, Cre-dependent expression of channelrhodopsins ChR2-tdTomato and ChR2-EYFP, halorhodopsin eNpHR3.0 and archaerhodopsin Arch-ER2. All four transgenes mediated Cre-dependent, robust activation or silencing of cortical pyramidal neurons in vitro and in vivo upon light stimulation, with ChR2-EYFP and Arch-ER2 demonstrating light sensitivity approaching that of in utero or virally transduced neurons. We further show specific photoactivation of parvalbumin-positive interneurons in behaving ChR2-EYFP reporter mice. The robust, consistent and inducible nature of our ChR2 mice represents a significant advance over previous lines, and the Arch-ER2 and eNpHR3.0 mice are to our knowledge the first demonstration of successful conditional transgenic optogenetic silencing. When combined with the hundreds of available Cre driver lines, this optimized toolbox of reporter mice will enable widespread investigations of neural circuit function with unprecedented reliability and accuracy.

1,168 citations

Journal ArticleDOI
TL;DR: The implications of cellular stress responses to human physiology and diseases are manifold and will be discussed in this review in the context of some major world health issues such as diabetes, Parkinson's disease, myocardial infarction, and cancer.
Abstract: Cells can respond to stress in various ways ranging from the activation of survival pathways to the initiation of cell death that eventually eliminates damaged cells. Whether cells mount a protective or destructive stress response depends to a large extent on the nature and duration of the stress as well as the cell type. Also, there is often the interplay between these responses that ultimately determines the fate of the stressed cell. The mechanism by which a cell dies (i.e., apoptosis, necrosis, pyroptosis, or autophagic cell death) depends on various exogenous factors as well as the cell's ability to handle the stress to which it is exposed. The implications of cellular stress responses to human physiology and diseases are manifold and will be discussed in this review in the context of some major world health issues such as diabetes, Parkinson's disease, myocardial infarction, and cancer.

1,166 citations


Authors

Showing all 165661 results

NameH-indexPapersCitations
Walter C. Willett3342399413322
Frederick E. Shelton3271485295883
Robert Langer2812324326306
Graham A. Colditz2611542256034
Frank B. Hu2501675253464
George M. Whitesides2401739269833
Eugene Braunwald2301711264576
Ralph B. D'Agostino2261287229636
Mark J. Daly204763304452
Eric B. Rimm196988147119
Virginia M.-Y. Lee194993148820
Bernard Rosner1901162147661
Stuart H. Orkin186715112182
Mark Hallett1861170123741
Ralph Weissleder1841160142508
Network Information
Related Institutions (5)
Baylor College of Medicine
94.8K papers, 5M citations

94% related

University of Texas Health Science Center at Houston
42.5K papers, 2.1M citations

93% related

Mayo Clinic
169.5K papers, 8.1M citations

93% related

University of Colorado Denver
57.2K papers, 2.5M citations

93% related

Icahn School of Medicine at Mount Sinai
76K papers, 3.7M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202380
2022442
202119,543
202016,558
201913,868
201812,020