scispace - formally typeset
Search or ask a question
Institution

Boston University

EducationBoston, Massachusetts, United States
About: Boston University is a education organization based out in Boston, Massachusetts, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 48688 authors who have published 119622 publications receiving 6276020 citations. The organization is also known as: BU & Boston U.


Papers
More filters
Book
30 Sep 1999
TL;DR: This edition includes recent research results pertaining to the diagnosis of discrete event systems, decentralized supervisory control, and interval-based timed automata and hybrid automata models.
Abstract: Introduction to Discrete Event Systems is a comprehensive introduction to the field of discrete event systems, offering a breadth of coverage that makes the material accessible to readers of varied backgrounds. The book emphasizes a unified modeling framework that transcends specific application areas, linking the following topics in a coherent manner: language and automata theory, supervisory control, Petri net theory, Markov chains and queuing theory, discrete-event simulation, and concurrent estimation techniques. This edition includes recent research results pertaining to the diagnosis of discrete event systems, decentralized supervisory control, and interval-based timed automata and hybrid automata models.

4,330 citations

Journal ArticleDOI
TL;DR: These guidelines are presented for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.

4,316 citations

Proceedings ArticleDOI
21 Jul 2017
TL;DR: Adversarial Discriminative Domain Adaptation (ADDA) as mentioned in this paper combines discriminative modeling, untied weight sharing, and a generative adversarial network (GAN) loss.
Abstract: Adversarial learning methods are a promising approach to training robust deep networks, and can generate complex samples across diverse domains. They can also improve recognition despite the presence of domain shift or dataset bias: recent adversarial approaches to unsupervised domain adaptation reduce the difference between the training and test domain distributions and thus improve generalization performance. However, while generative adversarial networks (GANs) show compelling visualizations, they are not optimal on discriminative tasks and can be limited to smaller shifts. On the other hand, discriminative approaches can handle larger domain shifts, but impose tied weights on the model and do not exploit a GAN-based loss. In this work, we first outline a novel generalized framework for adversarial adaptation, which subsumes recent state-of-the-art approaches as special cases, and use this generalized view to better relate prior approaches. We then propose a previously unexplored instance of our general framework which combines discriminative modeling, untied weight sharing, and a GAN loss, which we call Adversarial Discriminative Domain Adaptation (ADDA). We show that ADDA is more effective yet considerably simpler than competing domain-adversarial methods, and demonstrate the promise of our approach by exceeding state-of-the-art unsupervised adaptation results on standard domain adaptation tasks as well as a difficult cross-modality object classification task.

4,288 citations

Book
22 Dec 2014

4,258 citations

Journal ArticleDOI
TL;DR: 2012 Revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides J. Watts; Arthritis & Rheumatism
Abstract: 2012 Revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides J. Jennette;R. Falk;P. Bacon;N. Basu;M. Cid;F. Ferrario;L. Flores-Suarez;W. Gross;L. Guillevin;E. Hagen;G. Hoffman;D. Jayne;C. Kallenberg;P. Lamprecht;C. Langford;R. Luqmani;A. Mahr;E. Matteson;P. Merkel;S. Ozen;C. Pusey;N. Rasmussen;A. Rees;D. Scott;U. Specks;J. Stone;K. Takahashi;R. Watts; Arthritis & Rheumatism

4,249 citations


Authors

Showing all 49233 results

NameH-indexPapersCitations
Walter C. Willett3342399413322
Robert Langer2812324326306
Meir J. Stampfer2771414283776
Ronald C. Kessler2741332328983
JoAnn E. Manson2701819258509
Albert Hofman2672530321405
George M. Whitesides2401739269833
Paul M. Ridker2331242245097
Eugene Braunwald2301711264576
Ralph B. D'Agostino2261287229636
David J. Hunter2131836207050
Daniel Levy212933194778
Christopher J L Murray209754310329
Tamara B. Harris2011143163979
André G. Uitterlinden1991229156747
Network Information
Related Institutions (5)
Columbia University
224K papers, 12.8M citations

99% related

Yale University
220.6K papers, 12.8M citations

98% related

University of Washington
305.5K papers, 17.7M citations

98% related

Harvard University
530.3K papers, 38.1M citations

98% related

Johns Hopkins University
249.2K papers, 14M citations

98% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023223
2022810
20216,943
20206,837
20196,120
20185,593