scispace - formally typeset
Search or ask a question
Institution

Boston University

EducationBoston, Massachusetts, United States
About: Boston University is a education organization based out in Boston, Massachusetts, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 48688 authors who have published 119622 publications receiving 6276020 citations. The organization is also known as: BU & Boston U.


Papers
More filters
Journal ArticleDOI
27 Nov 1998-Science
TL;DR: Teleosts, the most species-rich group of vertebrates, appear to have more copies of these developmental regulatory genes than do mammals, despite less complexity in the anterior-posterior axis.
Abstract: HOX genes specify cell fate in the anterior-posterior axis of animal embryos. Invertebrate chordates have one HOX cluster, but mammals have four, suggesting that cluster duplication facilitated the evolution of vertebrate body plans. This report shows that zebrafish have seven hox clusters. Phylogenetic analysis and genetic mapping suggest a chromosome doubling event, probably by whole genome duplication, after the divergence of ray-finned and lobe-finned fishes but before the teleost radiation. Thus, teleosts, the most species-rich group of vertebrates, appear to have more copies of these developmental regulatory genes than do mammals, despite less complexity in the anterior-posterior axis.

1,730 citations

Journal ArticleDOI
07 Jan 1999-Nature
TL;DR: The strength spectra for the bonds between streptavidin (oravidin) and biotin—the prototype of receptor–ligand interactions used in earlier AFM studies, and which have been modelled by molecular dynamics, are reported.
Abstract: Atomic force microscopy (AFM) has been used to measure the strength of bonds between biological receptor molecules and their ligands. But for weak noncovalent bonds, a dynamic spectrum of bond strengths is predicted as the loading rate is altered, with the measured strength being governed by the prominent barriers traversed in the energy landscape along the force-driven bond-dissociation pathway. In other words, the pioneering early AFM measurements represent only a single point in a continuous spectrum of bond strengths, because theory predicts that these will depend on the rate at which the load is applied. Here we report the strength spectra for the bonds between streptavidin (or avidin) and biotins-the prototype of receptor-ligand interactions used in earlier AFM studies, and which have been modelled by molecular dynamics. We have probed bond formation over six orders of magnitude in loading rate, and find that the bond survival time diminished from about 1 min to 0.001 s with increasing loading rate over this range. The bond strength, meanwhile, increased from about 5 pN to 170 pN. Thus, although they are among the strongest noncovalent linkages in biology (affinity of 10(13) to 10(15) M(-1)), these bonds in fact appear strong or weak depending on how fast they are loaded. We are also able to relate the activation barriers derived from our strength spectra to the shape of the energy landscape derived from simulations of the biotin-avidin complex.

1,730 citations

Journal ArticleDOI
TL;DR: A population-based survey assessed sex-specific patterns of coronary heart disease occurring over a 26-year period of time, finding that among subjects ages 35 to 84 years, men have about twice the total incidence of morbidity and mortality of women.

1,729 citations

Journal ArticleDOI
TL;DR: Modifying factors that play roles in the development of joint OA may reduce the risk of OA and prevent subsequent pain and disability, particularly in the weight-bearing joints.

1,722 citations

Journal ArticleDOI
TL;DR: A perspective on the context and evolutionary significance of hybridization during speciation is offered, highlighting issues of current interest and debate and suggesting that the Dobzhansky–Muller model of hybrid incompatibilities requires a broader interpretation.
Abstract: Hybridization has many and varied impacts on the process of speciation. Hybridization may slow or reverse differentiation by allowing gene flow and recombination. It may accelerate speciation via adaptive introgression or cause near-instantaneous speciation by allopolyploidization. It may have multiple effects at different stages and in different spatial contexts within a single speciation event. We offer a perspective on the context and evolutionary significance of hybridization during speciation, highlighting issues of current interest and debate. In secondary contact zones, it is uncertain if barriers to gene flow will be strengthened or broken down due to recombination and gene flow. Theory and empirical evidence suggest the latter is more likely, except within and around strongly selected genomic regions. Hybridization may contribute to speciation through the formation of new hybrid taxa, whereas introgression of a few loci may promote adaptive divergence and so facilitate speciation. Gene regulatory networks, epigenetic effects and the evolution of selfish genetic material in the genome suggest that the Dobzhansky-Muller model of hybrid incompatibilities requires a broader interpretation. Finally, although the incidence of reinforcement remains uncertain, this and other interactions in areas of sympatry may have knock-on effects on speciation both within and outside regions of hybridization.

1,715 citations


Authors

Showing all 49233 results

NameH-indexPapersCitations
Walter C. Willett3342399413322
Robert Langer2812324326306
Meir J. Stampfer2771414283776
Ronald C. Kessler2741332328983
JoAnn E. Manson2701819258509
Albert Hofman2672530321405
George M. Whitesides2401739269833
Paul M. Ridker2331242245097
Eugene Braunwald2301711264576
Ralph B. D'Agostino2261287229636
David J. Hunter2131836207050
Daniel Levy212933194778
Christopher J L Murray209754310329
Tamara B. Harris2011143163979
André G. Uitterlinden1991229156747
Network Information
Related Institutions (5)
Columbia University
224K papers, 12.8M citations

99% related

Yale University
220.6K papers, 12.8M citations

98% related

University of Washington
305.5K papers, 17.7M citations

98% related

Harvard University
530.3K papers, 38.1M citations

98% related

Johns Hopkins University
249.2K papers, 14M citations

98% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023223
2022810
20216,943
20206,837
20196,120
20185,593