scispace - formally typeset
Institution

Brno University of Technology

EducationBrno, Czechia
About: Brno University of Technology is a(n) education organization based out in Brno, Czechia. It is known for research contribution in the topic(s): Fracture mechanics & Filter (video). The organization has 6339 authors who have published 15226 publication(s) receiving 194088 citation(s). The organization is also known as: Vysoké učení technické v Brně & BUT.


Papers
More filters
Posted Content

[...]

TL;DR: This paper proposed two novel model architectures for computing continuous vector representations of words from very large data sets, and the quality of these representations is measured in a word similarity task and the results are compared to the previously best performing techniques based on different types of neural networks.
Abstract: We propose two novel model architectures for computing continuous vector representations of words from very large data sets. The quality of these representations is measured in a word similarity task, and the results are compared to the previously best performing techniques based on different types of neural networks. We observe large improvements in accuracy at much lower computational cost, i.e. it takes less than a day to learn high quality word vectors from a 1.6 billion words data set. Furthermore, we show that these vectors provide state-of-the-art performance on our test set for measuring syntactic and semantic word similarities.

20,046 citations

Proceedings Article

[...]

01 Jan 2011
TL;DR: The design of Kaldi is described, a free, open-source toolkit for speech recognition research that provides a speech recognition system based on finite-state automata together with detailed documentation and a comprehensive set of scripts for building complete recognition systems.
Abstract: We describe the design of Kaldi, a free, open-source toolkit for speech recognition research. Kaldi provides a speech recognition system based on finite-state automata (using the freely available OpenFst), together with detailed documentation and a comprehensive set of scripts for building complete recognition systems. Kaldi is written is C++, and the core library supports modeling of arbitrary phonetic-context sizes, acoustic modeling with subspace Gaussian mixture models (SGMM) as well as standard Gaussian mixture models, together with all commonly used linear and affine transforms. Kaldi is released under the Apache License v2.0, which is highly nonrestrictive, making it suitable for a wide community of users.

5,200 citations

Proceedings Article

[...]

01 Jan 2010
TL;DR: Results indicate that it is possible to obtain around 50% reduction of perplexity by using mixture of several RNN LMs, compared to a state of the art backoff language model.
Abstract: A new recurrent neural network based language model (RNN LM) with applications to speech recognition is presented. Results indicate that it is possible to obtain around 50% reduction of perplexity by using mixture of several RNN LMs, compared to a state of the art backoff language model. Speech recognition experiments show around 18% reduction of word error rate on the Wall Street Journal task when comparing models trained on the same amount of data, and around 5% on the much harder NIST RT05 task, even when the backoff model is trained on much more data than the RNN LM. We provide ample empirical evidence to suggest that connectionist language models are superior to standard n-gram techniques, except their high computational (training) complexity. Index Terms: language modeling, recurrent neural networks, speech recognition

4,971 citations

Proceedings Article

[...]

16 Jan 2013
TL;DR: Two novel model architectures for computing continuous vector representations of words from very large data sets are proposed and it is shown that these vectors provide state-of-the-art performance on the authors' test set for measuring syntactic and semantic word similarities.
Abstract: We propose two novel model architectures for computing continuous vector representations of words from very large data sets. The quality of these representations is measured in a word similarity task, and the results are compared to the previously best performing techniques based on different types of neural networks. We observe large improvements in accuracy at much lower computational cost, i.e. it takes less than a day to learn high quality word vectors from a 1.6 billion words data set. Furthermore, we show that these vectors provide state-of-the-art performance on our test set for measuring syntactic and semantic word similarities.

4,882 citations

Proceedings Article

[...]

27 May 2013
TL;DR: The vector-space word representations that are implicitly learned by the input-layer weights are found to be surprisingly good at capturing syntactic and semantic regularities in language, and that each relationship is characterized by a relation-specific vector offset.
Abstract: Continuous space language models have recently demonstrated outstanding results across a variety of tasks. In this paper, we examine the vector-space word representations that are implicitly learned by the input-layer weights. We find that these representations are surprisingly good at capturing syntactic and semantic regularities in language, and that each relationship is characterized by a relation-specific vector offset. This allows vector-oriented reasoning based on the offsets between words. For example, the male/female relationship is automatically learned, and with the induced vector representations, “King Man + Woman” results in a vector very close to “Queen.” We demonstrate that the word vectors capture syntactic regularities by means of syntactic analogy questions (provided with this paper), and are able to correctly answer almost 40% of the questions. We demonstrate that the word vectors capture semantic regularities by using the vector offset method to answer SemEval-2012 Task 2 questions. Remarkably, this method outperforms the best previous systems.

3,034 citations


Authors

Showing all 6339 results

NameH-indexPapersCitations
Georg Kresse111430244729
Patrik Schmuki10976352669
Michael Schmid8871530874
Robert M. Malina8869138277
Jiří Jaromír Klemeš6456514892
Alessandro Piccolo6228414332
René Kizek6167216554
George Danezis5920911516
Stevo Stević583749832
Edvin Lundgren5728610158
Franz Halberg5575015400
Vojtech Adam5561114442
Lukas Burget5325221375
Jan Cermak532389563
Hynek Hermansky5131714372
Network Information
Related Institutions (5)
Vienna University of Technology
49.3K papers, 1.3M citations

87% related

Polytechnic University of Catalonia
45.3K papers, 949.3K citations

86% related

Fraunhofer Society
40.1K papers, 820.8K citations

86% related

Polytechnic University of Milan
58.4K papers, 1.2M citations

86% related

Aalto University
32.6K papers, 829.6K citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202237
20211,053
20201,010
20191,214
20181,131
20171,145