scispace - formally typeset
Search or ask a question
Institution

Brno University of Technology

EducationBrno, Czechia
About: Brno University of Technology is a education organization based out in Brno, Czechia. It is known for research contribution in the topics: Fracture mechanics & Filter (video). The organization has 6339 authors who have published 15226 publications receiving 194088 citations. The organization is also known as: Vysoké učení technické v Brně & BUT.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a hot-rolled steel IPE-beam designed according to Eurocodes is considered and its reliability is assessed using probabilistic analysis based on the Monte Carlo method.
Abstract: .The paper deals with the analysis of reliability of a hot-rolled steel IPE-beam designed according to Eurocodes. A beam at its ultimate limit state is considered. The load acting on the beam consists of permanent and long-term single variation actions. The beam is loaded with end bending moments about the major principal axis. The beam is susceptible to lateral torsional buckling between the end supports. Reliability of the beam is assessed using probabilistic analysis based on the Monte Carlo method. Failure probability is a function of the random variability of the loadcarrying capacity and the random variability of load effects. The variability of the load-carrying capacity is influenced by the variability of initial imperfections. Imperfections are considered according to experimental research. Numerical studies showed that the failure probability is significantly misaligned. High values of failure probability were obtained for slender beams, for beams loaded only by permanent load action, an...

44 citations

Posted Content
TL;DR: In this article, the authors use data from 10 BABEL languages to build a multi-lingual seq2seq model as a prior model, and then port them towards 4 other BABL languages using transfer learning approach.
Abstract: Sequence-to-sequence (seq2seq) approach for low-resource ASR is a relatively new direction in speech research. The approach benefits by performing model training without using lexicon and alignments. However, this poses a new problem of requiring more data compared to conventional DNN-HMM systems. In this work, we attempt to use data from 10 BABEL languages to build a multi-lingual seq2seq model as a prior model, and then port them towards 4 other BABEL languages using transfer learning approach. We also explore different architectures for improving the prior multilingual seq2seq model. The paper also discusses the effect of integrating a recurrent neural network language model (RNNLM) with a seq2seq model during decoding. Experimental results show that the transfer learning approach from the multilingual model shows substantial gains over monolingual models across all 4 BABEL languages. Incorporating an RNNLM also brings significant improvements in terms of %WER, and achieves recognition performance comparable to the models trained with twice more training data.

44 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of monomer concentration, reaction temperature and initiator structure on the activity, molar mass, branching and thermal properties of poly(hex-1-ene)s was investigated for the polymerization of hex-1ene initiated by four α-diimine complexes of nickel and palladium.

44 citations

Journal ArticleDOI
TL;DR: It is shown that the use of unmethylated plasmid DNA is necessary for efficient transformation or successful conjugation of C. pasteurianum NRRL B-598, and both Dam and Dcm methylations are detrimental for transformation.
Abstract: Butanol is currently one of the most discussed biofuels. Its use provides many benefits in comparison to bio-ethanol, but the price of its fermentative production is still high. Genetic improvements could help solve many problems associated with butanol production during ABE fermentation, such as its toxicity, low concentration achievable in the cultivation medium, the need for a relatively expensive substrate, and many more. Clostridium pasteurianum NRRL B-598 is non-type strain producing butanol, acetone, and a negligible amount of ethanol. Its main benefits are high oxygen tolerance, utilization of a wide range of carbon and nitrogen sources, and the availability of its whole genome sequence. However, there is no established method for the transfer of foreign DNA into this strain; this is the next step necessary for progress in its use for butanol production. We have described functional protocols for conjugation and transformation of the bio-butanol producer C. pasteurianum NRRL B-598 by foreign plasmid DNA. We show that the use of unmethylated plasmid DNA is necessary for efficient transformation or successful conjugation. Genes encoding DNA methylation and those for restriction-modification systems and antibiotic resistance were searched for in the whole genome sequence and their homologies with other clostridial bacteria were determined. Furthermore, activity of described novel type I restriction system was proved experimentally. The described electrotransformation protocol achieved an efficiency 1.2 × 102 cfu/μg DNA after step-by-step optimization and an efficiency of 1.6 × 102 cfu/μg DNA was achieved by the sonoporation technique using a standard laboratory ultrasound bath. The highest transformation efficiency was achieved using a combination of these approaches; sono/electroporation led to an increase in transformation efficiency, to 5.3 × 102 cfu/μg DNA. Both Dam and Dcm methylations are detrimental for transformation of C. pasteurianum NRRL B-598. Methods for conjugation, electroporation, sonoporation, and a combined method for sono/electroporation were established for this strain. The methods described could be used for genetic improvement of this strain, which is suitable for bio-butanol production.

44 citations

Proceedings ArticleDOI
01 May 2017
TL;DR: The program, utilizing the NVIDIA CUDA platform, employs parallelized computation of the individual columns of the Jacobi matrix, and this approach proved to be twenty times faster than the CPU-based sequential processing.
Abstract: The present paper discusses the process of parallelizing an algorithm for the reconstruction of an image acquired via electrical impedance tomography (EIT). The introductory section comprises a general description of EIT, the inverse problem, and regularization; in this context, the potential of the method for biomedicine, defectoscopy, and geophysical mapping is outlined. The following chapter then analyzes the objective function of the EIT inverse problem together with Tikhonov regularization. Besides setting up the objective function with a regularizing member, the authors also specify the differentiation equation for the iterative solution of the inverse problem via the Gauss-Newton method. Further, the time consumption of computing the Jacobian via a CPU compared to using a newly assembled program that exploits GPU-based parallel processing is investigated in detail. The program, utilizing the NVIDIA CUDA platform, employs parallelized computation of the individual columns of the Jacobi matrix, and this approach proved to be twenty times faster than the CPU-based sequential processing.

44 citations


Authors

Showing all 6383 results

NameH-indexPapersCitations
Georg Kresse111430244729
Patrik Schmuki10976352669
Michael Schmid8871530874
Robert M. Malina8869138277
Jiří Jaromír Klemeš6456514892
Alessandro Piccolo6228414332
René Kizek6167216554
George Danezis5920911516
Stevo Stević583749832
Edvin Lundgren5728610158
Franz Halberg5575015400
Vojtech Adam5561114442
Lukas Burget5325221375
Jan Cermak532389563
Hynek Hermansky5131714372
Network Information
Related Institutions (5)
Vienna University of Technology
49.3K papers, 1.3M citations

87% related

Polytechnic University of Catalonia
45.3K papers, 949.3K citations

86% related

Fraunhofer Society
40.1K papers, 820.8K citations

86% related

Polytechnic University of Milan
58.4K papers, 1.2M citations

86% related

Aalto University
32.6K papers, 829.6K citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202328
2022106
20211,053
20201,010
20191,214
20181,131