scispace - formally typeset
Search or ask a question
Institution

Broad Institute

NonprofitCambridge, Massachusetts, United States
About: Broad Institute is a nonprofit organization based out in Cambridge, Massachusetts, United States. It is known for research contribution in the topics: Population & Genome-wide association study. The organization has 6584 authors who have published 11618 publications receiving 1522743 citations. The organization is also known as: Eli and Edythe L. Broad Institute of MIT and Harvard.


Papers
More filters
Journal ArticleDOI
05 Jul 2007-Oncogene
TL;DR: A population-based cohort of men with localized prostate cancers followed by expectant (watchful waiting) therapy with 15% (17/111) TMPRSS2:ERG fusion is reported, finding a statistically significant association between TMPR SS2-ERG fusion and prostate cancer specific death.
Abstract: The identification of the TMPRSS2:ERG fusion in prostate cancer suggests that distinct molecular subtypes may define risk for disease progression. In surgical series, TMPRSS2:ERG fusion was identified in 50% of the tumors. Here, we report on a population-based cohort of men with localized prostate cancers followed by expectant (watchful waiting) therapy with 15% (17/111) TMPRSS2:ERG fusion. We identified a statistically significant association between TMPRSS2:ERG fusion and prostate cancer specific death (cumulative incidence ratio=2.7, P<0.01, 95% confidence interval=1.3–5.8). Quantitative reverse-transcription–polymerase chain reaction demonstrated high estrogen-regulated gene (ERG) expression to be associated with TMPRSS2:ERG fusion (P<0.005). These data suggest that TMPRSS2:ERG fusion prostate cancers may have a more aggressive phenotype, possibly mediated through increased ERG expression.

638 citations

Journal ArticleDOI
TL;DR: Functional study of genes marked by super-enhancers identifies DLBCLs dependent on OCA-B and suggests a strategy for discovering unrecognized cancer dependencies.

638 citations

Journal ArticleDOI
24 Dec 2009-Cell
TL;DR: A combination of yeast two-hybrid analysis and genome-wide expression profiling implicated hundreds of human factors in mediating viral-host interactions and pointed to potential roles for some unanticipated host and viral proteins in viral infection and the host response.

638 citations

Journal ArticleDOI
29 Mar 2013-Science
TL;DR: In this article, the authors review conceptual parallels between the respective biological phenomena, highlighting important interrelationships among transcription factors, chromatin regulators, and preexisting epigenetic states, and provide insights into oncogenic transformation, tumor heterogeneity, and cancer stem cell models.
Abstract: The demonstration of induced pluripotency and direct lineage conversion has led to remarkable insights regarding the roles of transcription factors and chromatin regulators in mediating cell state transitions. Beyond its considerable implications for regenerative medicine, this body of work is highly relevant to multiple stages of oncogenesis, from the initial cellular transformation to the hierarchical organization of established malignancies. Here, we review conceptual parallels between the respective biological phenomena, highlighting important interrelationships among transcription factors, chromatin regulators, and preexisting epigenetic states. The shared mechanisms provide insights into oncogenic transformation, tumor heterogeneity, and cancer stem cell models.

637 citations

Posted ContentDOI
10 May 2017-bioRxiv
TL;DR: A new, low-cost, high throughput reduced representation expression profiling method, L1000, is shown to be highly reproducible, comparable to RNA sequencing, and suitable for computational inference of the expression levels of 81% of non-measured transcripts.
Abstract: We previously piloted the concept of a Connectivity Map (CMap), whereby genes, drugs and disease states are connected by virtue of common gene-expression signatures. Here, we report more than a 1,000-fold scale-up of the CMap as part of the NIH LINCS Consortium, made possible by a new, low-cost, high throughput reduced representation expression profiling method that we term L1000. We show that L1000 is highly reproducible, comparable to RNA sequencing, and suitable for computational inference of the expression levels of 81% of non-measured transcripts. We further show that the expanded CMap can be used to discover mechanism of action of small molecules, functionally annotate genetic variants of disease genes, and inform clinical trials. The 1.3 million L1000 profiles described here, as well as tools for their analysis, are available at https://clue.io.

636 citations


Authors

Showing all 7146 results

NameH-indexPapersCitations
Eric S. Lander301826525976
Albert Hofman2672530321405
Frank B. Hu2501675253464
David J. Hunter2131836207050
Kari Stefansson206794174819
Mark J. Daly204763304452
Lewis C. Cantley196748169037
Matthew Meyerson194553243726
Gad Getz189520247560
Stacey Gabriel187383294284
Stuart H. Orkin186715112182
Ralph Weissleder1841160142508
Chris Sander178713233287
Michael I. Jordan1761016216204
Richard A. Young173520126642
Network Information
Related Institutions (5)
Howard Hughes Medical Institute
34.6K papers, 5.2M citations

96% related

Salk Institute for Biological Studies
13.1K papers, 1.6M citations

94% related

Fred Hutchinson Cancer Research Center
30.9K papers, 2.2M citations

93% related

Scripps Research Institute
32.8K papers, 2.9M citations

93% related

Genentech
17.1K papers, 1.4M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202337
2022628
20211,727
20201,534
20191,364
20181,107