scispace - formally typeset
Search or ask a question
Institution

Broad Institute

NonprofitCambridge, Massachusetts, United States
About: Broad Institute is a nonprofit organization based out in Cambridge, Massachusetts, United States. It is known for research contribution in the topics: Population & Genome-wide association study. The organization has 6584 authors who have published 11618 publications receiving 1522743 citations. The organization is also known as: Eli and Edythe L. Broad Institute of MIT and Harvard.


Papers
More filters
Journal ArticleDOI
27 Feb 2020-Nature
TL;DR: A distinct mutational signature in colorectal cancer is described and it is implied that the underlying mutational process results directly from past exposure to bacteria carrying the colibactin-producing pks pathogenicity island.
Abstract: Various species of the intestinal microbiota have been associated with the development of colorectal cancer1,2, but it has not been demonstrated that bacteria have a direct role in the occurrence of oncogenic mutations. Escherichia coli can carry the pathogenicity island pks, which encodes a set of enzymes that synthesize colibactin3. This compound is believed to alkylate DNA on adenine residues4,5 and induces double-strand breaks in cultured cells3. Here we expose human intestinal organoids to genotoxic pks+ E. coli by repeated luminal injection over five months. Whole-genome sequencing of clonal organoids before and after this exposure revealed a distinct mutational signature that was absent from organoids injected with isogenic pks-mutant bacteria. The same mutational signature was detected in a subset of 5,876 human cancer genomes from two independent cohorts, predominantly in colorectal cancer. Our study describes a distinct mutational signature in colorectal cancer and implies that the underlying mutational process results directly from past exposure to bacteria carrying the colibactin-producing pks pathogenicity island.

507 citations

Journal ArticleDOI
TL;DR: A much faster version of the BOLT-LMM Bayesian mixed model association method is introduced—capable of running analyses of the full UK Biobank cohort in a few days on a single compute node—and it is shown that it produces highly powered, robust test statistics when run on all 459K European samples (retaining related individuals).
Abstract: Biobank-based genome-wide association studies are enabling exciting insights in complex trait genetics, but much uncertainty remains over best practices for optimizing statistical power and computational efficiency in GWAS while controlling confounders. Here, we introduce a much faster version of our BOLT-LMM Bayesian mixed model association method—capable of running analyses of the full UK Biobank cohort in a few days on a single compute node—and show that it produces highly powered, robust test statistics when run on all 459K European samples (retaining related individuals). When used to conduct a GWAS for height in UK Biobank, BOLT-LMM achieved power equivalent to linear regression on 650K samples—a 93% increase in effective sample size versus the common practice of analyzing unrelated British samples using linear regression (UK Biobank documentation; Bycroft et al. bioRxiv). Across a broader set of 23 highly heritable traits, the total number of independent GWAS loci detected increased from 5,839 to 10,759, an 84% increase. We recommend the use of BOLT-LMM (retaining related individuals) for biobank-scale analyses, and we have publicly released BOLT-LMM summary association statistics for the 23 traits analyzed as a resource for all researchers.

506 citations

Journal ArticleDOI
Heng Li1
TL;DR: UNLABELLED Tabix is the first generic tool that indexes position sorted files in TAB-delimited formats such as GFF, BED, PSL, SAM and SQL export, and quickly retrieves features overlapping specified regions.
Abstract: Summary: Tabix is the first generic tool that indexes position sorted files in TAB-delimited formats such as GFF, BED, PSL, SAM and SQL export, and quickly retrieves features overlapping specified regions. Tabix features include few seek function calls per query, data compression with gzip compatibility and direct FTP/HTTP access. Tabix is implemented as a free command-line tool as well as a library in C, Java, Perl and Python. It is particularly useful for manually examining local genomic features on the command line and enables genome viewers to support huge data files and remote custom tracks over networks. Availability and Implementation: http://samtools.sourceforge.net. Contact: gro.etutitsnidaorb@ilgneh

506 citations

Journal ArticleDOI
TL;DR: It is shown that loss of ATRX protein and mutations in the ATRRX gene are hallmarks of ALT–immortalized cell lines, and these attributes will facilitate the diagnosis and treatment ofALT positive human cancers.
Abstract: The Alternative Lengthening of Telomeres (ALT) pathway is a telomerase-independent pathway for telomere maintenance that is active in a significant subset of human cancers and in vitro immortalized cell lines. ALT is thought to involve templated extension of telomeres through homologous recombination, but the genetic or epigenetic changes that unleash ALT are not known. Recently, mutations in the ATRX/DAXX chromatin remodeling complex and histone H3.3 were found to correlate with features of ALT in pancreatic neuroendocrine cancers, pediatric glioblastomas, and other tumors of the central nervous system, suggesting that these mutations might contribute to the activation of the ALT pathway in these cancers. We have taken a comprehensive approach to deciphering ALT by applying genomic, molecular biological, and cell biological approaches to a panel of 22 ALT cell lines, including cell lines derived in vitro. Here we show that loss of ATRX protein and mutations in the ATRX gene are hallmarks of ALT–immortalized cell lines. In addition, ALT is associated with extensive genome rearrangements, marked micronucleation, defects in the G2/M checkpoint, and altered double-strand break (DSB) repair. These attributes will facilitate the diagnosis and treatment of ALT positive human cancers.

504 citations

Journal ArticleDOI
01 Nov 2019-Science
TL;DR: This process of “clonal hematopoiesis,” including the mechanisms by which it arises and the current state of knowledge regarding its effects on human health is reviewed, including the prevalence and clinical associations of somatic, clonal mutations in blood cells of individuals without hematologic malignancies.
Abstract: As people age, their tissues accumulate an increasing number of somatic mutations. Although most of these mutations are of little or no functional consequence, a mutation may arise that confers a fitness advantage on a cell. When this process happens in the hematopoietic system, a substantial proportion of circulating blood cells may derive from a single mutated stem cell. This outgrowth, called "clonal hematopoiesis," is highly prevalent in the elderly population. Here we discuss recent advances in our knowledge of clonal hematopoiesis, its relationship to malignancies, its link to nonmalignant diseases of aging, and its potential impact on immune function. Clonal hematopoiesis provides a glimpse into the process of mutation and selection that likely occurs in all somatic tissues.

504 citations


Authors

Showing all 7146 results

NameH-indexPapersCitations
Eric S. Lander301826525976
Albert Hofman2672530321405
Frank B. Hu2501675253464
David J. Hunter2131836207050
Kari Stefansson206794174819
Mark J. Daly204763304452
Lewis C. Cantley196748169037
Matthew Meyerson194553243726
Gad Getz189520247560
Stacey Gabriel187383294284
Stuart H. Orkin186715112182
Ralph Weissleder1841160142508
Chris Sander178713233287
Michael I. Jordan1761016216204
Richard A. Young173520126642
Network Information
Related Institutions (5)
Howard Hughes Medical Institute
34.6K papers, 5.2M citations

96% related

Salk Institute for Biological Studies
13.1K papers, 1.6M citations

94% related

Fred Hutchinson Cancer Research Center
30.9K papers, 2.2M citations

93% related

Scripps Research Institute
32.8K papers, 2.9M citations

93% related

Genentech
17.1K papers, 1.4M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202337
2022627
20211,727
20201,534
20191,364
20181,107