scispace - formally typeset
Search or ask a question
Institution

Broad Institute

NonprofitCambridge, Massachusetts, United States
About: Broad Institute is a nonprofit organization based out in Cambridge, Massachusetts, United States. It is known for research contribution in the topics: Population & Genome-wide association study. The organization has 6584 authors who have published 11618 publications receiving 1522743 citations. The organization is also known as: Eli and Edythe L. Broad Institute of MIT and Harvard.


Papers
More filters
Journal ArticleDOI
TL;DR: Findings support a link between BRCA1/2-mutation status, immunogenicity and survival, and suggest that BRC a2-mutated HGSOCs may be more sensitive to PD-1/PD-L1 inhibitors compared to HR-proficient H GSOCs.
Abstract: // Kyle C. Strickland 1 , Brooke E. Howitt 1 , Sachet A. Shukla 2, 4 , Scott Rodig 1 , Lauren L. Ritterhouse 1 , Joyce F. Liu 3 , Judy E. Garber 4 , Dipanjan Chowdhury 5 , Catherine J. Wu 2, 4 , Alan D. D’Andrea 5 , Ursula A. Matulonis 3 , Panagiotis A. Konstantinopoulos 3 1 Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA 2 The Broad Institute of Harvard and MIT, Cambridge, MA, USA 3 Medical Gynecologic Oncology Program, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA 4 Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA 5 Division of Genomic Stability and DNA Repair, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA Correspondence to: Panagiotis A. Konstantinopoulos, e-mail: panagiotis_konstantinopoulos@dfci.harvard.edu Keywords: high grade serous ovarian cancer, BRCA1 and BRCA2 mutations, homologous recombination DNA repair, immunogenicity, PD-1 and PD-L1 Received: October 12, 2015 Accepted: January 24, 2016 Published: February 09, 2016 ABSTRACT Immune checkpoint inhibitors (e.g., anti-PD-1 and anti-PD-L1 antibodies) have demonstrated remarkable efficacy against hypermutated cancers such as melanomas and lung carcinomas. One explanation for this effect is that hypermutated lesions harbor more tumor-specific neoantigens that stimulate recruitment of an increased number of tumor-infiltrating lymphocytes (TILs), which is counterbalanced by overexpression of immune checkpoints such as PD-1 or PD-L1. Given that BRCA1/2-mutated high grade serous ovarian cancers (HGSOCs) exhibit a higher mutational load and a unique mutational signature with an elevated number of larger indels up to 50 bp, we hypothesized that they may also harbor more tumor-specific neoantigens, and, therefore, exhibit increased TILs and PD-1/PD-L1 expression. Here, we report significantly higher predicted neoantigens in BRCA1/2-mutated tumors compared to tumors without alterations in homologous recombination (HR) genes (HR-proficient tumors). Tumors with higher neoantigen load were associated with improved overall survival and higher expression of immune genes associated with tumor cytotoxicity such as genes of the TCR, the IFN-gamma and the TNFR pathways. Furthermore, immunohistochemistry studies demonstrated that BRCA1/2-mutated tumors exhibited significantly increased CD3+ and CD8+ TILs, as well as elevated expression of PD-1 and PD-L1 in tumor-associated immune cells compared to HR-proficient tumors. Survival analysis showed that both BRCA1/2-mutation status and number of TILs were independently associated with outcome. Of note, two distinct groups of HGSOCs, one with very poor prognosis (HR proficient with low number of TILs) and one with very good prognosis (BRCA1/2-mutated tumors with high number of TILs) were defined. These findings support a link between BRCA1/2-mutation status, immunogenicity and survival, and suggesting that BRCA1/2-mutated HGSOCs may be more sensitive to PD-1/PD-L1 inhibitors compared to HR-proficient HGSOCs.

459 citations

Journal ArticleDOI
TL;DR: The failure of standard methods to detect stratification in case-control association studies indicates that new methods may be required, and a SNP in the gene LCT that varies widely in frequency across Europe was strongly associated with height.
Abstract: Population stratification occurs in case-control association studies when allele frequencies differ between cases and controls because of ancestry. Stratification may lead to false positive associations, although this issue remains controversial. Empirical studies have found little evidence of stratification in European-derived populations, but potentially significant levels of stratification could not be ruled out. We studied a European American panel discordant for height, a heritable trait that varies widely across Europe. Genotyping 178 SNPs and applying standard analytical methods yielded no evidence of stratification. But a SNP in the gene LCT that varies widely in frequency across Europe was strongly associated with height (P < 10(-6)). This apparent association was largely or completely due to stratification; rematching individuals on the basis of European ancestry greatly reduced the apparent association, and no association was observed in Polish or Scandinavian individuals. The failure of standard methods to detect this stratification indicates that new methods may be required.

459 citations

Journal ArticleDOI
TL;DR: Oncotator is a tool for annotating genomic point mutations and short nucleotide insertions/deletions (indels) with variant‐ and gene‐centric information relevant to cancer researchers that is drawn from 14 different publicly available resources that have been pooled and indexed.
Abstract: Oncotator is a tool for annotating genomic point mutations and short nucleotide insertions/deletions (indels) with variant- and gene-centric information relevant to cancer researchers. This information is drawn from 14 different publicly available resources that have been pooled and indexed, and we provide an extensible framework to add additional data sources. Annotations linked to variants range from basic information, such as gene names and functional classification (e.g. missense), to cancer-specific data from resources such as the Catalogue of Somatic Mutations in Cancer (COSMIC), the Cancer Gene Census, and The Cancer Genome Atlas (TCGA). For local use, Oncotator is freely available as a python module hosted on Github (https://github.com/broadinstitute/oncotator). Furthermore, Oncotator is also available as a web service and web application at http://www.broadinstitute.org/oncotator/.

459 citations

Journal ArticleDOI
TL;DR: Analysis in 53 tumors confirmed the presence of 7 variants of this fusion transcript in 29 tumors, representing a lower bound for fusion frequency at this locus and suggesting that the NAB2-STAT6 fusion is a distinct molecular feature of SFTs.
Abstract: Solitary fibrous tumors (SFTs) are rare mesenchymal tumors. Here, we describe the identification of a NAB2-STAT6 fusion from whole-exome sequencing of 17 SFTs. Analysis in 53 tumors confirmed the presence of 7 variants of this fusion transcript in 29 tumors (55%), representing a lower bound for fusion frequency at this locus and suggesting that the NAB2-STAT6 fusion is a distinct molecular feature of SFTs.

458 citations

Journal ArticleDOI
Richard Anney1, Richard Anney2, Stephan Ripke3, Stephan Ripke4  +211 moreInstitutions (77)
TL;DR: A significant genetic correlation with schizophrenia and association of ASD with several neurodevelopmental-related genes such as EXT1, ASTN2, MACROD2, and HDAC4 is identified and identified.
Abstract: Background: Over the past decade genome-wide association studies (GWAS) have been applied to aid in the understanding of the biology of traits. The success of this approach is governed by the underlying effect sizes carried by the true risk variants and the corresponding statistical power to observe such effects given the study design and sample size under investigation. Previous ASD GWAS have identified genome-wide significant (GWS) risk loci; however, these studies were of only of low statistical power to identify GWS loci at the lower effect sizes (odds ratio (OR) <1.15). Methods: We conducted a large-scale coordinated international collaboration to combine independent genotyping data to improve the statistical power and aid in robust discovery of GWS loci. This study uses genome-wide genotyping data from a discovery sample (7387 ASD cases and 8567 controls) followed by meta-analysis of summary statistics from two replication sets (7783 ASD cases and 11359 controls; and 1369 ASD cases and 137308 controls). Results: We observe a GWS locus at 10q24.32 that overlaps several genes including PITX3, which encodes a transcription factor identified as playing a role in neuronal differentiation and CUEDC2 previously reported to be associated with social skills in an independent population cohort. We also observe overlap with regions previously implicated in schizophrenia which was further supported by a strong genetic correlation between these disorders (Rg = 0.23; P=9 ×10−6). We further combined these Psychiatric Genomics Consortium (PGC) ASD GWAS data with the recent PGC schizophrenia GWAS to identify additional regions which may be important in a common neurodevelopmental phenotype and identified 12 novel GWS loci. These include loci previously implicated in ASD such as FOXP1 at 3p13, ATP2B2 at 3p25.3, and a ‘neurodevelopmental hub’ on chromosome 8p11.23. Conclusions: This study is an important step in the ongoing endeavour to identify the loci which underpin the common variant signal in ASD. In addition to novel GWS loci, we have identified a significant genetic correlation with schizophrenia and association of ASD with several neurodevelopmental-related genes such as EXT1, ASTN2, MACROD2, and HDAC4.

458 citations


Authors

Showing all 7146 results

NameH-indexPapersCitations
Eric S. Lander301826525976
Albert Hofman2672530321405
Frank B. Hu2501675253464
David J. Hunter2131836207050
Kari Stefansson206794174819
Mark J. Daly204763304452
Lewis C. Cantley196748169037
Matthew Meyerson194553243726
Gad Getz189520247560
Stacey Gabriel187383294284
Stuart H. Orkin186715112182
Ralph Weissleder1841160142508
Chris Sander178713233287
Michael I. Jordan1761016216204
Richard A. Young173520126642
Network Information
Related Institutions (5)
Howard Hughes Medical Institute
34.6K papers, 5.2M citations

96% related

Salk Institute for Biological Studies
13.1K papers, 1.6M citations

94% related

Fred Hutchinson Cancer Research Center
30.9K papers, 2.2M citations

93% related

Scripps Research Institute
32.8K papers, 2.9M citations

93% related

Genentech
17.1K papers, 1.4M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202337
2022627
20211,727
20201,534
20191,364
20181,107